
CPL Programming Manual
Typ3 osa / PNC

111
Edition

Antriebs- und Steuerungstechnik

Typ3 osa / PNC

CPL Programming Manual

1070 073 740-111 (02.11) GB

E 1994 – 2002

by Bosch Rexroth AG, Erbach / Germany
All rights reserved, including applications for protective rights.

Reproduction or distribution by any means subject to our prior written permission.

Discretionary charge EUR 12.–

Software release: V7.3

Contents V

1070 073 740-111 (02.11) GB

Contents

Page

1 Safety Instructions 1–1 .
1.1 Intended use 1–1 .
1.2 Qualified personnel 1–2 .
1.3 Safety markings on products 1–3 .
1.4 Safety instructions in this manual 1–4 .
1.5 Safety instructions for the described product 1–5
1.6 Documentation, software release and trademarks 1–7

2 CPL – Basic Elements 2–1 .
2.1 Program structure 2–1 .
2.1.1 NC block 2–3 .
2.1.2 CPL block 2–4 .
2.2 Start of program 2–4 .
2.3 Linking 2–5 .
2.4 Symbol names 2–5 .
2.4.1 Reserved instruction words 2–6 .
2.4.2 Constants 2–7 .
2.4.3 Variables 2–8 .
2.5 Instructions 2–15 .
2.5.1 Arithmetical operations 2–16 .
2.5.2 Logical operations 2–18 .
2.5.3 Conversion between numeric systems 2–19 .
2.5.4 Relational operations 2–19 .
2.5.5 Repeat instructions 2–20 .
2.5.6 Unconditional jump instruction 2–22 .
2.5.7 Branch instructions (conditional jump instructions) 2–23
2.5.8 Program remark 2–25 .

3 Sub-programs and Cycles 3–1 .
3.1 Calling sub-programs with G, M or P address 3–1
3.2 Handling modal sub-program calls 3–1 .
3.3 Sub-program call via CALL function 3–2 .
3.4 Parameter transfer to sub-programs 3–3 .

4 System Functions 4–1 .
4.1 Standard functions 4–1 .
4.2 Axis and coordinate positions 4–3 .
4.2.1 Functions for coordinates or physical axes 4–8
4.2.2 Functions for physical or logical axes 4–13 .
4.2.3 Functions for use with physical axes only 4–17
4.3 Axis zero shift operations 4–19 .
4.4 Tool compensations 4–23 .
4.5 Access to the tool database 4–25 .
4.6 Contour shift 4–26 .
4.7 Compensation of workpiece position 4–27 .
4.8 Scaling 4–28 .
4.9 Active system data 4–29 .
4.10 Variable axis address 4–39 .
4.11 PLC interface 4–40 .
4.12 Time recording 4–42 .
4.13 Errors and Error Categories 4–43 .

ContentsVI

1070 073 740-111 (02.11) GB

4.14 NCS coupling 4–46 .
4.14.1 Possible error return values of the functions 4–46
4.14.2 Available functions 4–48 .
4.14.3 Programming examples 4–76 .

5 Processing Character Strings 5–1
5.1 Dimensioning character fields 5–1 .
5.2 Reading characters from a definable point into a character string 5–2
5.3 Modifying character strings 5–3 .
5.4 Character string length 5–4 .
5.5 Searching for a character string 5–4 .
5.6 Strings and numbers 5–5 .
5.7 Removing leading and trailing spaces 5–8 .
5.8 Programming examples 5–9 .
5.8.1 Assigning a STRING expression to a character field 5–11
5.8.2 Comparisons of STRING expressions 5–12 .
5.8.3 Chaining STRING expressions 5–13 .

6 File Handling 6–1 .
6.1 Filenames and file structures 6–1 .
6.1.1 File names 6–1 .
6.1.2 Sequential file structure 6–2 .
6.1.3 Random file structure 6–2 .
6.2 Opening a file 6–3 .
6.3 Inscribing a file 6–5 .
6.4 Reading a file 6–8 .
6.5 End-of-file recognition 6–10 .
6.6 Closing a file 6–10 .
6.7 Reading file pointer position 6–11 .
6.8 Setting file pointer 6–13 .
6.9 Determining file size 6–14 .
6.10 Erasing a file 6–15 .
6.11 Determine file access rights 6–16 .
6.12 Determine file date 6–17 .

7 Dialog Programming 7–1 .
7.1 Calling CPL dialog via softkeys 7–1 .
7.2 CPL dialog in the editor 7–2 .
7.3 Data input and output 7–3 .

8 Graphic Programming 8–1 .
8.1 Color selection 8–1 .
8.2 Line type 8–3 .
8.3 Defining the graphics area 8–3 .
8.4 Join (line) 8–4 .
8.5 Circle 8–5 .
8.6 Filling in closed contour surfaces 8–6 .
8.7 Clear commands 8–6 .
8.8 Text output in the graphics grid 8–7 .
8.9 Influencing the entire CPL dialog window 8–8
8.10 Display bitmap files 8–8 .

Contents VII

1070 073 740-111 (02.11) GB

9 Communication 9–1 .

A Annex A–1 .
A.1 Abbreviations A–1 .
A.2 Overview of commands A–2 .
A.3 Differences regarding the CPL commands:

Typ3 osa <–> CC200, CC220, CC300, CC320 A–10
A.3.A CPL commands and SD functions which are no longer applicable

in the Typ3 osa A–10 .
A.3.B CPL commands and SD functions which have been changed

in the Typ3 osa A–12 .
A.3.C Other CPL changes in the Typ3 osa A–13 .
A.4 MACODA parameters (list of changes) A–14 .
A.5 ASCII character set A–16 .
A.6 Additional keycodes A–16 .
A.7 Index A–17 .

ContentsVIII

1070 073 740-111 (02.11) GB

Safety Instructions 1–1

1070 073 740-111 (02.11) GB

1 Safety Instructions

Please read this manual before using the CPL programming language.
Store this manual in a place to which all users have access at all times.

1.1 Intended use

This manual contains information required for the proper use of the control
unit. For reasons of clarity, however, it cannot contain all details about all
possible combinations of functions. Likewise, it is impossible to consider
every conceivable case of integration, programming or operation.

The Typ3 osa and PNC controls are used to
D activate feed drives, spindles and auxiliary axes of a machine tool via

SERCOS interface for the purpose of guiding a processing tool along a
programmed path to process a workpiece (CNC). Furthermore, I/O com-
ponents are required for the integrated PLC which – in communication
with the actual CNC – controls the machine processing cycles holistically
and acts as a technical safety monitor.

D program contours and the processing technology (path feedrate, spindle
speed, tool change) of a workpiece.

Any other application is deemed improper use!

The products described hereunder
D have been developed, manufactured, tested and documented in com-

pliance with the safety standards. These products pose no danger to per-
sons or property if they are used in accordance with the handling
stipulations and safety notes prescribed for their configuration, mount-
ing, and proper operation.

D comply with the requirements of
D the EMC Directives (89/336/EEC, 93/68/EEC and 93/44/EEC)
D the Low-Voltage Directive (73/23/EEC)
D the harmonized standards EN 50081-2 and EN 50082-2

D are designed for operation in industrial environments, i.e.
D no direct connection to public low-voltage power supply,
D connection to the medium- or high-voltage system via a transformer.
In residential environments, in trade and commerce as well as small en-
terprises class A equipment may only be used if the following warning is
attached:

. This is a Class A device. In a residential area, this device may cause
radio interference. In such case, the user may be required to introduce
suitable countermeasures, and to bear the cost of the same.

The faultless, safe functioning of the product requires proper transport, stor-
age, erection and installation as well as careful operation.

Safety Instructions1–2

1070 073 740-111 (02.11) GB

1.2 Qualified personnel

The requirements as to qualified personnel depend on the qualification pro-
files described by ZVEI (central association of the electrical industry) and
VDMA (association of German machine and plant builders) in:
Weiterbildung in der Automatisierungstechnik
edited by: ZVEI and VDMA
MaschinenbauVerlag
Postfach 71 08 64
D-60498 Frankfurt.

The present manual is designed for
D NC programming personnel and NC project engineers.

These persons need special knowledge of
D the operation, syntax and commands of the CPL and the DIN program-

ming languages.

Programming, start and operation as well as the modification of programs or
program parameters may only be performed by properly trained personnel!
This personnel must be able to judge potential hazards arising from pro-
gramming, program changes and in general from the mechanical, electrical,
or electronic equipment.

Interventions in the hardware and software of our products, unless de-
scribed otherwise in this manual, are reserved to our specialized personnel.

Tampering with the hardware or software, ignoring warning signs attached to
the components, or non-compliance with the warning notes given in this
manual may result in serious bodily injury or material damage.

Only electrotechnicians as recognized under IEV 826-09-01 (modified) who
are familiar with the contents of this manual may install and service the prod-
ucts described.

Such personnel are
D those who, being well trained and experienced in their field and familiar

with the relevant norms, are able to analyze the jobs being carried out
and recognize any hazards which may have arisen.

D those who have acquired the same amount of expert knowledge through
years of experience that would normally be acquired through formal tech-
nical training.

With regard to the foregoing, please note our comprehensive range of train-
ing courses. Please visit our website at http://www.boschrexroth.de for the
latest information concerning training courses, teachware and training sys-
tems. Personal information is available from our Didactic Center Erbach,
Telephone: (+49) (0) 60 62 78-600.

Safety Instructions 1–3

1070 073 740-111 (02.11) GB

1.3 Safety markings on products

Warning of dangerous electrical voltage!

Warning of danger caused by batteries!

Components sensitive to electrostatic discharge!

Warning of hazardous light emissions (optical fiber cable
emitters)

Disconnect mains power before opening!

Pin for connecting PE conductor only!

Connection of shield conductor only

Safety Instructions1–4

1070 073 740-111 (02.11) GB

1.4 Safety instructions in this manual

DANGEROUS ELECTRICAL VOLTAGE
This symbol is used to warn of a dangerous electrical voltage. The fail-
ure to observe the instructions in this manual in whole or in part may result
in personal injury.

DANGER
This symbol is used wherever insufficient or lacking compliance with in-
structions may result in personal injury.

CAUTION
This symbol is used wherever insufficient or lacking compliance with in-
structions may result in damage to equipment or data files.

. This symbol is used to draw the user’s attention to special circumstances.

L This symbol is used if user activities are required.

Safety Instructions 1–5

1070 073 740-111 (02.11) GB

1.5 Safety instructions for the described product

DANGER
Danger of life through inadequate EMERGENCY-STOP devices!
EMERGENCY-STOP devices must be active and within reach in all
system modes. Releasing an EMERGENCY-STOP device must not
result in an uncontrolled restart of the system!
First check the EMERGENCY-STOP circuit, then switch the system
on!

DANGER
Risk of personal injury and equipment damage!
Always subject new programmes to initial tests while inhibiting axis
movements. For this purpose, as a function of the AUTOMATIC
mode, the controller provides the option to block axis movements or
auxiliary functions by means of special softkey commands.

DANGER
Incorrect or undesired control unit response!
Rexroth accepts no liability for damage resulting from the execution
of an NC program, an individual NC block or the manual movement
of axes!

Furthermore, Rexroth accepts no liability for consequential damage
which could have been avoided by programming the PLC appropri-
ately!

DANGER
Retrofits or modifications may adversely affect the safety of the
products described!
The consequences may include severe injury, damage to equipment,
or environmental hazards. Possible retrofits or modifications to the
system using third-party equipment therefore have to be approved
by Rexroth.

DANGEROUS ELECTRICAL VOLTAGE
Unless described otherwise, maintenance works must be performed
on inactive systems! The system must be protected against unau-
thorized or accidental reclosing.

Measuring or test activities on the live system are reserved to quali-
fied electrical personnel!

Safety Instructions1–6

1070 073 740-111 (02.11) GB

DANGER
Tool or axis movements!
Feed and spindle motors generate very powerful mechanical forces
and can accelerate very quickly due to their high dynamics.
D Always stay outside the danger area of an active machine tool!
D Never deactivate safety-relevant functions!
D Report any malfunction of the unit to your servicing and repairs

department immediately!

CAUTION
Use only spare parts approved by Rexroth!

CAUTION
Danger to the module!
All ESD protection measures must be observed when using the mo-
dule! Prevent electrostatic discharges!

The following protective measures must be observed for modules and com-
ponents sensitive to electrostatic discharge (ESD)!
D Personnel responsible for storage, transport, and handling must have

training in ESD protection.
D ESD-sensitive components must be stored and transported in the pre-

scribed protective packaging.
D ESD-sensitive components may only be handled at special ESD-work-

places.
D Personnel, working surfaces, as well as all equipment and tools which

may come into contact with ESD-sensitive components must have the
same potential (e.g. by grounding).

D Wear an approved grounding bracelet. The grounding bracelet must be
connected with the working surface through a cable with an integrated
1 MW resistor.

D ESD-sensitive components may by no means come into contact with
chargeable objects, including most plastic materials.

D When ESD-sensitive components are installed in or removed from equip-
ment, the equipment must be de-energized.

Safety Instructions 1–7

1070 073 740-111 (02.11) GB

1.6 Documentation, software release and trademarks

Documentation
The present manual provides information on the operation, syntax and com-
mands of the CPL programming language.

. The present manual applies only to CPL programming of the CNC.
Subjects related to DIN programming are covered in a separate
manual.
For programming of manufacturer-specific (MTB) cycles, please refer
to the applicable documentation of the machine-tool builder.

Overview of available documentation Part no.

German English French

Typ3 osa – Connectivity Manual for project
engineering and maintenance

1070 073 704 1070 073 736 –

Typ3 osa – Software installation 1070 073 796 1070 073 797 –

PNC – Connectivity Manual 1070 073 880 1070 073 881 –

PNC – BF2xxT/BF3xxT Control Panel
Connectivity Manual

1070 073 814 1070 073 824 –

PNC – Software installation 1070 073 882 1070 073 883 –

Description of functions 1070 073 870 1070 073 871 –

MACODA
Operation and configuration of the machine parame-
ters

1070 073 705 1070 073 742 –

Operating instructions – Standard operator interface 1070 073 726 1070 073 739 1070 073 876

Operating instructions – Diagnostics Tools 1070 073 779 1070 073 780 –

Error Messages 1070 073 798 1070 073 799 –

PLC project planning manual,
Software interfaces of the integrated PLC

1070 073 728 1070 073 741 –

iPCL system description and programming manual 1070 073 874 1070 073 875 –

ICL700 system description (Typ3 osa only),
Program structure of the integrated PLC ICL700

1070 073 706 1070 073 737 –

DIN programming manual
for programming to DIN 66025

1070 073 725 1070 073 738 –

CPL programming manual 1070 073 727 1070 073 740 –

CPL Debugger Operating Instructions 1070 073 872 – –

Tool Management – Parameterization 1070 073 782 1070 073 793 –

Software PLC
Development environment for Windows NT

1070 073 783 1070 073 792 –

Measuring cycles for
touch-trigger switching probes

1070 073 788 1070 073 789 –

Universal Milling Cycles – 1070 073 795 –

. In this manual the floppy disk drive always uses drive letter A:, and the
hard disk drive always uses drive letter C:.

Safety Instructions1–8

1070 073 740-111 (02.11) GB

Special keys or key combinations are shown enclosed in pointed brackets:
D Named keys: e.g., <Enter>, <PgUp>,
D Key combinations (pressed simultaneously): e.g., <Ctrl> + <PgUp>

Release

. This manual refers to the following version:
Software: V7.3

The current release number of the individual software modules can be
viewed by selecting the ’Control-Diagnostics’ softkey in the ’Diagnostics’
operating mode.

The software version of Windows 95 or Windows NT may be displayed as
follows:
1. Click with right mouse key on the ’My Computer’ icon on your desktop.
2. Select menu item ’Properties’.

Trademarks
All trademarks of software installed on Rexroth products upon delivery are
the property of the respective manufacturer.

Upon delivery, all installed software is copyright-protected. The software
may only be reproduced with the approval of Rexroth or in accordance with
the license agreement of the respective manufacturer.

MS-DOSr and Windowst are registered trademarks of Microsoft Corpo-
ration.

PROFIBUSr is a registered trademark of the PROFIBUS Nutzerorganisa-
tion e.V. (user organization).

SERCOS interfacet is a registered trademark of the Interessenge-
meinschaft SERCOS interface e.V. (SERCOS interface Joint VDW/ZVEI
Working Committee).

CPL – Basic Elements 2–1

1070 073 740-111 (02.11) GB

2 CPL – Basic Elements

The objective in the development of the Customer Programming Language
(CPL) was to provide the user with extended options for DIN programming.
CPL makes it possible to write and store any machining operation in the form
of sub-programs in a variety of formats.

With regard to its handling procedures and the available selection of its lan-
guage elements, CPL adheres to the BASIC high-level language standard.
As a consequence, in addition to an appropriate degree of language com-
prehensiveness, CPL is also easy to learn. For advanced applications,
structural elements similar to PASCAL are provided.

The application of CPL will facilitate:
D shortening of repeat procedures in NC programs and similar program

segments, and
D status-dependent program variants as a result of access to NC system

data.

CPL functions can be utilized in the processing sequences of main and sub-
programs.

2.1 Program structure

A program generally consists of a declaration part and an instruction part,
the latter of which, although not being a mandatory requirement for CPL,
may still serve to provide an improved overview of the program.

For example, the declaration part may be used to comment names of vari-
ables, to dimension field variables or to assign variables. Also, fixed values
can be listed in a list of constants, thus reducing the effort required in the
event of modifications. Detailed information on this subject appears further
on in this manual.
The instruction part provides the symbolic description of program execution.
This is accomplished by means of instructions linking data with the aid of
symbol names and operators.

Declaration part

Instruction part

Program

From within a particular program (main program), other programs can be ex-
ecuted by invoking sub-program calls. Once the execution of a sub-program
call has been concluded, the main program will continue to run from that
point onward. Sub-programs, in turn, can accommodate further sub-pro-
gram calls. CPL permits a maximum 7-fold nesting depth.

CPL – Basic Elements2–2

1070 073 740-111 (02.11) GB

Main pro-
gram

Sub-pro-
gram

Sub-pro-
gram

Sub-pro-
gram

In accordance with existing formal input stipulations, CPL instructions are
usually written in capital letters. A formal input comprises the correct syntax
of reserved instruction words, thus preventing possible confusion with
names of variables.

A consequence of increasing program size is the increased demand for
clean programming. Besides comprehensible constants and designations
of variables, clean programming mainly includes
D structured programming,
D fault tolerance, and
D software ergonomics.

Generally speaking, structured programs tend to be clearer in their overall
architecture. A practice providing several advantages is that of bundling pro-
gram segments serving related purposes or containing frequently used
functions into (parameterized) sub-programs or under a single jump destina-
tion. With the added identification by a comprehensible designation (label),
and because the respective functions are very often utilized by other pro-
grams, this practice, besides resulting in improved readability of the referred
programs, also provides the benefit of preventing duplication of effort. Al-
though it should be noted that this approach to programming cannot fully ex-
clude the occasional requirement for programming tricks; it stands to reason
that any programmer would best serve his own interest by annotating such
tricks with the appropriate comments.

Error-tolerant (fault-forgiving) programs present a significant challenge be-
cause experience indicates that the creativity and imagination evidenced by
users during the input dialog by far exceeds the capabilities of the most cre-
ative and imaginative programmers. The foregoing observation notwith-
standing, unfailing attempts on the part of the programmer must be directed
toward making his program creation as failure-proof and error-tolerant as
possible.

The number of input errors can also be reduced through the observation of
software ergonomics. For example, menu options can be visually high-
lighted without great effort. In doing so, and while making full use of the perti-
nent capacities inherent in the computer, good judgement should be used in
order not to use an excessive variety of colors. The stipulations of the
DIN 66 234 standard provide excellent guidelines in this regard.

CPL – Basic Elements 2–3

1070 073 740-111 (02.11) GB

2.1.1 NC block

In accordance with programming guidelines as stipulated in the DIN stan-
dard, a complete CPL instruction is also referred to as a CPL block. Because
parts programming may utilize a combination of NC blocks and CPL blocks,
a brief discussion of NC blocks appears in order.

NC blocks conform to DIN 66 025 and contain standard information, such as
preparatory functions, axis positioning and auxiliary functions. These are
programmed with the use of either N-block number or by omitting the block
number.

Example:
N100 G1 X150 Y100.525
or
G1 X150 Y100.525

For further details, please refer to the DIN programming manual.

With the use of CPL it is also possible to write the word contents within a
particular NC block (with the exception of N-addresses) in a syntax that in-
cludes variables. This makes it possible to effect parameterization of proc-
essing operations. It is instructive to note, however, that this practice must
not be employed in order to exert, during runtime, an influence on the pro-
gram flow that could not have been already considered during the linking
process. The following example shows the application of variables in a sub-
program with the three parameters named P1, P2 and P3.

Example:
.

5

.N10
N20

.

G1
G22

M30

X XVALUE F FEED*2+1000 M3M

XVALUE=P1 : FEED=P2 : COMPTAB=P3 : M3=3

K[COMPTAB]

The parameter values are transferred in the sub-program call of the main
program. The square brackets [] depict the use of variables. Block N10
indicates that not only the names of variables but also entire CPL expres-
sions may be used while enclosed in square brackets.

. None of the addresses invoking a sub-program are intended for vari-
able syntax.

CPL – Basic Elements2–4

1070 073 740-111 (02.11) GB

2.1.2 CPL block

A CPL block consists of an instruction or declaration that is preceded by a
line number.
If a CPL block concludes with a colon ”:” or a <LINE FEED> character, it
must be followed by another CPL block without a line number.

Example:

N120 G0 X0 Y0 Z0

.

.

.

30 IF X%=3 THEN GOTO 150 ENDIF:

40 IF X%=4 THEN GOTO 200 ENDIF :
50 WAIT

N100 G90
N110 G1 X XPOS Y YPOS Z ZPOS

60 XPOS=MPOS(1) : YPOS=MPOS(2) : ZPOS=MPOS(3)

REM JUMP DESTINATION1
REM JUMP DESTINATION2

115 REM Travel at G1

. The colon can also be interpreted as marking a comment within an
REM instruction. In this case the colon does not separate two CPL
blocks.

A <LINE FEED> identifies the programmed line end. It is automatically in-
serted into the program text by pressing the ENTER key. However, the
<LINE FEED> character is neither visible on the screen nor on the hardcopy.
In the event that a CPL block does not conclude with a colon, only a CPL
block with a line number or an NC block may follow.

2.2 Start of program

A CPL program is normally selected in the operating mode, and
started by means of CYCLE START. These programs must either be com-
posed exclusively of CPL blocks, or they may comprise combinations of
both NC and CPL blocks.

CPL – Basic Elements 2–5

1070 073 740-111 (02.11) GB

2.3 Linking

Subsequent to program selection via ”CPL Prog” status (toggle softkey), the
program is first checked for proper syntax, and for possible jump destina-
tions and sub-program calls. This process is termed ”linking” or ”preparing”.
It results in the creation of a so-called link table.

. Only a CPL program that has been linked can be started.

The control unit stores all link tables in a special directory defined by the
MACODA parameter 3080 00004. In this process, the filenames identifying
link tables are formed from the name of the selected program and the file-
name extension ”.l” (l = Link).

While it is starting up, the control unit tries to find the relevant program for all
the existing link tables. To do this the search path from MACODA parameter
3080 00001 is used.
Link tables for which no program exists are erased.

If a program is selected again, the Typ3 osa uses an existing link table, pro-
vided that the program has not been modified in the interim. If the program
has been changed, it will be linked again.

In the event that sub-programs are called in the program to be linked, the
control unit will check whether updated link tables exist for the respective
programs.
If this is the case, such sub-programs will not be linked again. This may sig-
nificantly accelerate the linking process for a main program incorporating
numerous sub-program calls.

2.4 Symbol names

A typical feature of programming languages such as CPL is symbolic pro-
gramming. Symbol names represent variable or permanently preset nu-
merical values, and link instructions for this data. The following tables list
those keywords that are reserved exclusively for use in instruction words.

CPL – Basic Elements2–6

1070 073 740-111 (02.11) GB

2.4.1 Reserved instruction words

The key terms listed below must be used in stand-alone fashion or delimited
by special characters, immediately identifying them as instruction words.
The selection of names for variables must not encompass any reserved in-
struction words!

Example:

GOTO 10

GOTO10 !

! Jump to line 10

Definable symbol name (variable); on its own it will
lead to error message RUNTIME ERROR 2167 = MISSING,
because a value assignment is expected for the
 GOTO10 variable.

Key terms:

A: ABS
ACOS

AXP B: BCD
BIN

C: CASE
CALL

CLS
COF

D: DATE
DIM

ABS
ACOS
AND
APOS
ASC
ASIN
ATAN
AXO

AXP BCD
BIN
BMP

CASE
CALL
CHR$
CIR
CLG
CLOCK
CLOSE
CLR

CLS
COF
COL
*) COM
COS
CPROBE
CPOS
CSF

DATE
DIM
DLG
DLF
DO
DSP
DPC

E: ELSE
END

F: FALSE
FIL

*) FIXB
*) FIXE

G: GETERR
GMD

I: IC
IF

ELSE
END
ENDDLG
ENDIF
ENDCASE
EOF
ERASE

FALSE
FIL
FILEACCESS
FILEDATE
FILEPOS
FILESIZE
*) FIX

*) FIXB
*) FIXE
FOR
FXC
FXCR
FXDEL
FXINS

GETERR
GMD
GOTO
GPR
GWD

IC
IF
INKEY
INP
INP#
INSTR
INT

L: LABEL
LEN

M: MCA
MCODS

MID$
MMC

N: NCF
NEXT

NOT
NUL

O: OF
OPENR

ORLABEL
LEN
LIN
LJUST

MCA
MCODS
MCOPS
*) MIC

MID$
MMC
MPOS
MWD

NCF
NEXT
NJUST

NOT
NUL

OF
OPENR
OPENW
OTHERWISE

OR

P: PDIM
PLC

R: REM
REPEAT

S: SCL
SCS

SIN
SPOS

T: TAN
TC

THEN
TIME

PDIM
PLC
PPOS
PRN
PRN#
PROBE

REM
REPEAT
REWRITE
RGB
ROUND

SCL
SCS
SD
SDR
SEEK
SFK

SIN
SPOS
SQRT
STEP
STR$

TAN
TC
*) TD
TDA
*) TDR
TFO

THEN
TIME
TRIM$
TRUE
*) TXT$

U: UNTIL V: VAL W: WAIT
WHILE

X: XOR
WHILE
WPOS

*) reserved keywords currently not in use

CPL uses the following code characters:

! ? , " < − / &

% $: () = > + *

][

@

The comma is normally used as a delimiter. It is used as a grammatical
punctuation mark only within character strings. The period is used as a deci-
mal point in decimal numbers, and as a label identifier in jump destinations.
Within character strings, the period is interpreted as a grammatical punctu-
ation mark.

CPL – Basic Elements 2–7

1070 073 740-111 (02.11) GB

2.4.2 Constants

If numerical values are declared for program execution and are to remain
unchanged (constant) such values may be entered into the instructions as a
numerical expression.

Integer constant (INTEGER)
Integers are written without decimal points.

Example:
NUMBER% = 4

INTEGER constant

Floating-point constant (REAL)
Real numbers (decimal numbers or fractions) are identified by a decimal
point (floating point).

Example:
PI = 3.141593

REAL constant

Double-precision constant and double-precision operations

Constants assigned to, or compared with, a double-precision REAL vari-
able, are represented with double precision, i.e. precise to 15 digits.

Example: Assignment of double-precision REAL constants, and comparing
variables with double-precision REAL constants.
4 D5! = –1234.123456 + 12345 + 1234.234567
20 D0! = 123456789.123456
22 D1! = 1.12345678901234
24 D2! = –123456789012345
26 D3! = –1234.123456

The following queries produce the result E? = TRUE

28 IF D0! = 123456789.123456 THEN E? = TRUE ELSE E? = FALSE ENDIF
29 IF D1! = 1.12345678901234 THEN E? = TRUE ELSE E? = FALSE ENDIF
30 IF D2! = –123456789012345 THEN E? = TRUE ELSE E? = FALSE ENDIF
31 IF D3! = –1234.123456 THEN E? = TRUE ELSE E? = FALSE ENDIF
32 IF D0! + 2.1 + 3.1 = 123456789.123456 + 2.1 + 3.1 THEN
33 E? = TRUE
34 ELSE
35 E? = FALSE
36 ENDIF
37 IF (D0! + 2.1) + 3.1 = 123456789.123456 + 2.1 + 3.1 THEN
38 E? = TRUE
39 ELSE
40 E? = FALSE
41 ENDIF

Character string constant (STRING)
A character string constant is limited by quotation marks (inverted commas).

Example:
EXAMPLE$ = ”This is a character string”

STRING constant

CPL – Basic Elements2–8

1070 073 740-111 (02.11) GB

2.4.3 Variables

If it is deemed desirable that data remains subject to change (i.e. variable)
during program execution, this data will be defined by means of expressions
containing variables. Variables are definable symbol names for which, in
CPL, some declarations must be effected. The most important declaration is
the unambiguous choice of a name for the variable.
However, variable names may not include reserved instruction words, also
termed keywords.
The name of the variable may consist of any sequence of capital letters and
numbers, the only stipulation being that the first character must be a capital
letter.
As CPL uses only the first 8 characters of the name of the variable to distin-
guish variables, these 8 characters are termed significant. However, in order
to enhance program documentation, the name of the variable itself may be
longer than 8 characters.

Examples of local, global and permanent variables:
10 NUMBER1% = 1 local INTEGER variable
20 #NUMBER2% = 2 global INTEGER variable
30 @36% = 3 permanent INTEGER variable
40 @ABCD% = 4 defined permanent INTEGER variable

Groups of variables
Declarations with regard to the effective range of variables are required due
to the option of using sub-programs, and also due to the possible require-
ment to commit the values of variables to intermediate storage independent
of the respective program being executed. To this end, a distinction is made
between the following groups of variables:

Local variables
take effect only within the program for which they have been declared. As the
referred program reaches the end of program (EP), the variables are de-
leted, thus releasing the respective memory addresses. In the case of a sub-
program call, the name of a variable that is local with respect to the main
program will not be ”visible” to the sub-program. However, the same variable
can also be declared as a local variable in the sub-program without conse-
quential interference due to the similarity of their respective names. Upon
return to the main program, the original local variable will again be available,
bearing the value that was current at the time the sub-program was invoked
from within the main program.

Global variables
are identified by a leading ”#” (number sign, gate or hash) character that is
followed by the name of the variable. Once a value has been assigned to a
global variable, it can be accessed, read and/or modified from within all pro-
gram parts for the remainder of the entire program. Global variables are
again deleted subsequent to end of program (EP).

. In the case of global variables the # symbol counts as part of the name
of the variable. For this reason, the symbol ”#” and the following 7
characters form the significant name of the variable!

CPL – Basic Elements 2–9

1070 073 740-111 (02.11) GB

Permanent variables
are identified by a leading ”@” (at symbol) character followed by the name of
the variable. They can be addressed from within any active program. The
variable will be permanently retained even subsequent to EP. Deletion is
possible only through direct overwriting. As permanent variables are stored
in a separate memory range, clearing the entire memory will not affect the
permanent variables.

Under the designation @1 through @100, permanent variables of the
“INTEGER” type can be addressed (for detailed information on the
INTEGER type, see ’Types of variables’ on page 2–12). To improve program
readability, the indication of such permanent variables can also be aug-
mented by appending letter characters to the number.
In addition, the permanent one-dimensional field variable @_R can be used
with 100 elements of ”Double”. The two permanent variables
@_RES_DOUBLE and @_RES_DWORD are reserved for internal applica-
tions and should not be used.

Definable permanent variables
are also identified by a leading ”@” character followed by the name of a vari-
able.
The distinguishing characteristics of “permanent variables” are as follows:
1. Definable permanent variables are not automatically declared as a com-

ponent of the system software but manually declared via user entry in
the files named wmhperm.dat (for proprietary data supplied by the ma-
chine tool manufacturer) and anwperm.dat (for end user-specific data).
The declaration syntax is discussed under ”File structure of
wmhperm.dat and anwperm.dat,” below.
During system start-up, the control searches for the files first in the root
directory, then in the user FEPROM, and finally in the FEPROM.
The control system interprets the file identified by the first occurrence of
the respective filename, using the entries found therein to create defin-
able permanent variables, provided they do not already exist. Existing
definable permanent variables that are not declared in one of the above-
named files will be deleted.
The maximum possible number of definable permanent variables is dic-
tated by the available memory capacity. In the event that no more
memory capacity is available for generating variables, the Typ3 osa/PNC
will return an appropriate fault message.

2. The names of definable permanent variables always begin with the ”@”
character and a character string. This character string consists of one
capital letter character, followed by any combination of capital letter or
alphanumeric characters.
In the case of the definable permanent variables, the first 16 characters
of the name of the variable are significant. If two names of variables ex-
hibit a difference only with the 17th character and following, CPL will inter-
pret them as one single variable!

3. Defined permanent variables may be of the INTEGER, REAL,
DOUBLE, BOOLEAN or CHARACTER type.
The type of the variable is specified by appending an identifier to the end
of the name of the variable. This specification must be entered into the
part program:
@ABCD% defined permanent variable of INTEGER type
@EFGH defined permanent variable of REAL type (without %, !,$ or ?)
@IJKL! defined permanent variable of DOUBLE type
@MNOP? defined permanent variable of BOOLEAN type
@QRST$ defined permanent variable of CHARACTER type

4. One- and two-dimensional fields may be used.
The maximum field index is 65535 with field variables of the INTEGER,
REAL, DOUBLE or BOOLEAN type. With field variables of the CHAR-
ACTER type, the maximum field index is 1024.

CPL – Basic Elements2–10

1070 073 740-111 (02.11) GB

Examples:

@WZNR%(1)=4

The variable (with the indexes 2.2)
within the 2-dimensional field @WZKOR of
the REAL type is assigned the value 0.2.

@WZKOR(2,2)=0.2

The first variable (with Index 1) of
the 1-dimensional field @WZNR of the
INTEGER type is assigned the value 4.

5. Estimating the available number of newly definable permanent vari-
ables:
D Total memory space for permanent variables:

100 Kbyte (102400 byte)
D In versions smaller than V6.0: 15 Kbyte (15360 byte).

Thus the number of maximum possible variables is reduced.

Pos. Reserved for Memory
space (as
of V6.0) in
bytes

Comment

1 all permanent variables 102400 Total memory

of which the following are reserved for

2 @1 – @99
(permanent variables)

800

3 administrative information 24

4 all definable permanent
variables

101576 (4) = (1) – (2) – (3)

Pos. Reserved for Memory
space in
bytes

Comment

4 all definable permanent
variables

101576 (4) = (1) – (2) – (3)

of which the following are reserved for

5 @_R 823 Permanent field variables
with 100 elements of the
type DOUBLE

6 @_RES_DOUBLE 40 Permanent variables of the
type DOUBLE, reserved
for internal applications

7 @_RES_DWORD 35 Permanent variables of the
INTEGER type, reserved
for internal applications

8 newly defined perma-
nent variables

100678 (8) = (4) – (5)
– (6) – (7)

CPL – Basic Elements 2–11

1070 073 740-111 (02.11) GB

Each definable permanent variable occupies the following memory
space:

Pos. Reserved for Memory space
in bytes

Comment

9 the names of the permanent va-
riables

max. 16 1 byte per
character

10 the value of the definable per-
manent variables

1, 4 or 8 Integer: 4 bytes
Double: 8 bytes
Real: 4 bytes
Boolean: 1 byte

11 administrative information 20

12 a definable permanent variable
of the DOUBLE type with a
name length of 16 characters

44 e.g.: maximum
assignment of
memory space
(9) + (10) + (11)

Number of ”definable permanent variables” of the types DOUBLE and
INTEGER:

Variable type Number of
variables

Comment

Type DOUBLE with a name length
of max. 16 characters

2288 100678/44=2288

Type INTEGER with a name length
of max. 16 characters

2516 100678/(16+4+20)
=2516

Type INTEGER with a name length
of max. 8 characters

3146 100678/(8+4+20)
=3146

Field variables with name lengths
of max.16 characters,
Type INTEGER

25160 (100678–16–20)/4
=25160

Field variables with name lengths
of max.16 characters,
Type DOUBLE

12580 (100678–16–20)/8
=12580

File structure of “wmhperm.dat” and “anwperm.dat” files:
The files may contain only declarations of “definable permanent variables”.
Each declaration occupies a separate line, and concludes with a RETURN.

A line of declaration always exhibits the following structure:

DEF <type of variable> @<name of variable>; [<comment>]

Examples of ”wmhperm.dat” and ”anwperm.dat”:
DEF INT @ABCD ;simple INTEGER variable

DEF REAL @EFGH ;simple REAL variable

DEF DOUBLE @IJKL ;simple DOUBLE variable

DEF BOOL @MNOP ;simple BOOLEAN variable

DEF CHAR @PSTR1(3) ;CHARACTER variable with a length of 3

DEF INT @WZNR(9) ;1-dimensional INTEGER field with 9 variables

DEF INT @WZKOR(9,2) ;2-dimensional REAL field with 18 variables

DEF CHAR @PSTR2(9,2) ;2-dimensional CHARACTER field with

 9 partial strings of 2 characters each

CPL – Basic Elements2–12

1070 073 740-111 (02.11) GB

Application examples of perm. variables in the program:
10 @1 = 1

15 @2_COUNTER = 2

20 @ABCD% = 3

25 @EFGH = 4.1

30 @IJKL! = 5.12345

35 @MNOP? = TRUE

40 @PSTR1$ = “ABC”

45 @WZNR%(2) = 6

50 @WZKOR(3,2) = 7.6

55 @PSTR2$(3) = “DE”

Types of variables
INTEGER variable
An INTEGER variable occupies 32 bits of memory space. It is identified by a
”%” (percentage) character appended to the name of the variable. The value
range extends from –2.147.483.648 through +2.147.483.647.

10 NUMBER% = 4

INTEGER variable

Floating-point variable (REAL)
If no special identification is appended to the name of the variable, the vari-
able will be interpreted as a REAL variable of single precision.
In this case, the variable occupies 32 bits of memory space. The range of
values encompasses +/–1038, this being the equivalent to 7 significant dig-
its.

PI = 3.14159310

REAL variable with single precision

Floating-point variable (DOUBLE)
If an exclamation mark ”!” is appended to the name of the variable, the vari-
able will be interpreted as a REAL variable with double precision.
In this case, a variable occupies 64 bits of memory space. The value range
encompasses +/– 10308, this being the equivalent of 15 significant digits.

PI! = 3.14159265358979310

REAL variable with double precision

CPL – Basic Elements 2–13

1070 073 740-111 (02.11) GB

Logical variable (BOOLEAN)
Logical variables are identified by a ”?” question mark that is appended to the
name of the variable. Logical variables (Boolean variables) can assume only
the values TRUE or FALSE. They are used to store logical statuses or con-
ditions that will be needed throughout the course of program execution.

START? = FALSE10

BOOLEAN variable

Field variable (ARRAY)
The use of ARRAY variables makes it possible to reserve, under a single
designation, a one or two-dimensional field (array), consisting of one or
more variables of the same type, within the memory range.
Field definitions are possible for variables of the INTEGER, REAL,
DOUBLE, BOOLEAN and CHARACTER types. To enable access to the in-
dividual field elements of an array, the field index and/or indices are specified
in addition to the name of the field variable.

Example: Dimensioning an ARRAY variable
10 DIM FIELDVAR (2,3)

INTEGER constant for field sizes (index)
Name of variable (REAL variable)

DIM instruction word

Example: Access to Array variable
100 = MPOS(1)
110 = CPOS(1)
120 = MPOS(2)
130 = CPOS(2)
140 = MPOS(3)
150 = CPOS(3)

FIELDVAR(1,1)
FIELDVAR(2,1)
FIELDVAR(1,2)
FIELDVAR(2,2)
FIELDVAR(1,3)
FIELDVAR(2,3)

100
110
120
130
140
150

FIELDVAR(1,1)
FIELDVAR(2,1)
FIELDVAR(1,2)
FIELDVAR(2,2)
FIELDVAR(1,3)
FIELDVAR(2,3)

Prior to the initial access to the field variables, the index range and/or the
field size must be dimensioned with INTEGER constants:
D Field size of the field variable of the types INTEGER and REAL:

max. 65536
D Field size of the field variables of the type CHARACTER: max. 1024

DIM <name of variable>(<fieldsize1>[,<fieldsize2>])

. Dimensioning with DIM may not be applied to ”definable permanent
variables”. Instead, the dimensioning of these variables occurs in the
file wmhperm.dat or anwpwerm.dat.

CPL – Basic Elements2–14

1070 073 740-111 (02.11) GB

CHARACTER and STRING variables
A CHARACTER variable is identified by a trailing ”$” (dollar) sign. This type
of variable can accommodate a single character as well as a complete char-
acter string.
However, character string instructions (see section “Processing Character
Strings”) are possible only if a character string is stored in a one-dimensional
or a two-dimensional field (array) of CHARACTER variables. For this the
field must be declared by means of a DIM instruction.
Each CHARACTER variable in this field then contains only one character of
the character string.
A one-dimensional field comprised of variables of the CHARACTER type is
termed STRING variable. No index is entered when accessing a one-dimen-
sional CHARACTER variable. However, when accessing a two-dimensional
CHARACTER variable, an index must be entered

Example:
1 REM String variable AB (length 10)
2 DIM AB$(10)
3 REM 3 String variables CD (each at a length of 5)
4 DIM CD$(3,5)
5 AB$ = ”Z”
6 CD$(2) = ”ABC”

Overview of variables

1 – 100

!
?

%
REAL
DOUBLE
BOOLEAN

INTEGER

% INTEGERDefinable
permanent @

!
?

REAL
DOUBLE
BOOLEAN

Arrays possible?
 (x=YES)

x
x
x

x

x
x
x
x

$ CHARACTER x

Global #

Local

Permanent @

$ CHARACTER x

!
?

%
REAL
DOUBLE
BOOLEAN

INTEGER

$ CHARACTER

x
x
x

x

x

Group of variables Name of variable Type of variable

max. 16 significant
characters

max. 8 significant
characters

incl. ”#” symbol
max. 8 significant
characters

CPL – Basic Elements 2–15

1070 073 740-111 (02.11) GB

2.5 Instructions

Local as well as global variables can be assigned values. This is accom-
plished with the use of the ”=” (equals) sign.

Example: Value assignment, BOOLEAN variable
START? = FALSE1

Value

Assignment symbol (equals sign)

(logical) variable

Example: Value assignment, REAL variable
X1MIN! = 2097.8761

Value (max. 7 digits)

double�precision REAL variable

Assignment symbol (equals sign)

Example: Value assignment between variables
XSET = XMIN!1

Value (double�precision REAL variable)

single�precision REAL variable

Assignment symbol (equals sign)

The variable to be assigned a value must be positioned to the left of the as-
signment symbol, and the respective value to the right. This declaration
must be used with special caution especially in cases where the value of one
variable is to be assigned to another variable.

NUL
If a value has not been assigned to a variable, it will have the value of NUL.
As a consequence, the statement <VARIABLE>= NUL is true. This signifies
that the equals sign can also be used in expressions representing compari-
sons or conditional operations.

If the direct deletion of a local or global variable is desired, this can be accom-
plished by assigning the NUL value. In contrast, a permanent variable can-
not be deleted but requires overwriting.

Example: Deleting a variable

1 XSET = NUL
2 IF XSET = NUL THEN
3 PRN#(0,”Variable not assigned.”)
4 ENDIF

CPL – Basic Elements2–16

1070 073 740-111 (02.11) GB

2.5.1 Arithmetical operations

Besides the assignment of a value in the form of a constant expression (nu-
merical) or a variable, it is also possible to assign the value of a CPL expres-
sion to a variable. A CPL expression may contain functions using both
constants and variables.

The simplest functions include the four basic arithmetical operations:
Addition » + « (plus sign)
Subtraction » – « (minus sign)
Multiplication » * « (asterisk)
Division » / « (slash character)

As a rule, multiplication and division take priority over addition and subtrac-
tion. It is also possible to use parentheses, the nesting of which to a depth of
seven can be used with simple expressions (containing no function calls).

Example:
1 I% = 25: XACTUAL = 10
2 XSET = 150/(100–I%)+XACTUAL XSET has the value 12!

It is also possible to invoke arithmetical functions that act upon variables,
constants or CPL expressions which must be placed in rounded brackets
immediately behind the respective instruction word. The function always re-
fers to the internal numerical representation of the input value. This repre-
sentation can be verified during program execution with the use of ”program
check.” In the case of nested expressions, and particularly when these con-
tain function calls, the maximum possible nesting depth must be considered.
It is dependent upon the memory capacity required by the bracketed expres-
sions during their respective execution.

ABS
Returns the absolute value of the input value, i.e. negative values become
positive and positive values remain positive.

Example:
1 I% = –125
2 XVALUE = 2*SQRT(ABS(100+I%)) XVALUE has the value 10!

INT
Converts the input value (REAL) by cutting of the decimal places (rounding)
to a whole number (INTEGER). The input value may be a constant or a va-
riable.

Example:
1 XVALUE% = INT(10.9) XVALUE has the value 10!

CPL – Basic Elements 2–17

1070 073 740-111 (02.11) GB

ROUND
Converts the input value into an INTEGER by rounding it off or up to a whole
number (INTEGER). The input value can be a REAL expression.

Example:
1 XVALUE% = Round(10.9) XVALUE has the value 11
2 XVALUE% = Round(5.5) XVALUE has the value 6
3 XVALUE% = Round(5.49) XVALUE has the value 5

!
!

!

SQRT
This command forms the square root of an input value. Because this is not
defined, the input value must not be a negative value.

Example:
1 I% = 44
2 XSET = 4*SQRT(100+I%) XSET has the value 48!

SIN, COS, TAN, ASIN, ACOS, ATAN
In the case of trigonometric functions that process angles in terms of con-
ventional degrees of arc, it is useful to identify the angles as double-preci-
sion REAL variables. The following trigonometrical functions can be used:

SIN
COS
TAN

–
–
–

Sine function
Cosine function
Tangent function

ASIN
ACOS
ATAN

–
–
–

Antisine function
Anticosine function
Arc tangent function

Example:
1 ANGLE = 30
2 XVALUE = SIN(ANGLE) XVALUE has the value 0.5
3 YVALUE = ASIN(XVALUE) YVALUE has the value 30

!
!

CPL – Basic Elements2–18

1070 073 740-111 (02.11) GB

2.5.2 Logical operations

Binary logical operations can be effected by means of logical variables, and
decimal logical operations with the use of INTEGER variables. As depicted
in the diagram below, logical operations can be represented with the usual
operating symbols, i.e. the ”·” and the ”+” symbol (not in CPL, however).
Here, too, the governing rule is that of priority of multiplication and division
over addition and subtraction. As a consequence, the AND operation takes
priority over the OR operation. Bracket nesting up to a depth of seven is
possible.

NOT, AND, OR, XOR
CPL provides four types of logical operation:
D the NOT function NOT
D the AND function AND
D the OR function OR
D the EXCLUSIVE OR function XOR

NOT AND OR XOR

E1 = A E1 E1 + E2 = A E1

E1
E1 E1 E1

E2E2E2
o− A A A A

NOT AND OR XOR

E1
E2
A

0
−
L

L
−
0

0
0
0

0
L
0

L
0
0

L
L
L

0
0
0

0
L
L

L
0
L

L
L
L

0
0
0

0
L
L

L
0
L

L
L
0

E2 = A. E2+E1 E2=A. .

1 & >1 =1

operation operation operation operation

Logical operations can be utilized for bit masking.

Example: Is bit 0 set in @20?

.
20 IF 20 AND 1 <> 0 THEN GOTO . SET
30
.

ELSE GOTO .UNSET ENDIF
@

CPL – Basic Elements 2–19

1070 073 740-111 (02.11) GB

2.5.3 Conversion between numeric systems

BCD
Converts binary value into BCD format:

<BCD value>=BCD(<binary value>)

Example:
1 BCD_VALUE = BCD(49) BCD_VALUE has the value 73!

BIN
Converts BCD-coded numbers into binary value:

<binary value>=BIN(<BCD value>)

Example:
!1 BIN_VALUE = BCD(49) BIN_VALUE has the value 31

2.5.4 Relational operations

=, >=, >, <>, <=, <
The following comparison operations are permitted:
» = « equal
» >= « greater than/equal
» > « greater than
» <> « not equal
» <= « less than/equal
» < « smaller than

Comparison operations are used to describe the relation (”fulfilled” or “not
fulfilled”) of a condition (e.g. for the commands REPEAT – UNTIL, WHILE
– DO – END, IF – THEN – ELSE – ENDIF).

CPL – Basic Elements2–20

1070 073 740-111 (02.11) GB

2.5.5 Repeat instructions

In the event that one or more instructions must be repeatedly processed in
accordance with specific conditions, which is to be indicated here as a
”routine”, the option exists to accomplish this routine by means of repeat in-
structions. The multiple repetition of the program is known as a “loop”.

FOR – STEP – TO – NEXT
If the abort condition is to be a direct consequence of the processing of the
routine a tracking counter would be required. This counter requires no spe-
cific programming for the FOR NEXT loop. A counting variable (INTEGER)
is declared, the start and end count of which must be specified. If the count-
ing increment deviates from 1, the step size (STEP) can be specified. A FOR
NEXT loop is structured as follows:

FOR <numerical variable>=<start value> [STEP <stepsize>] TO <end

value> <routine>

NEXT [<numerical variable>]

Example:
10
20
30

FOR I%=0 TO 18
XSINUS(I%)=SIN(I%*10)
NEXT I%

. Proceeding the loop, the numerical variable will have a value which is
larger than the end value (max. step size).

In this example, the sine values for 0 through 180 degrees are written into the
XSINUS field. The “I%” that was appended to the “NEXT” in line 30 serves
clarification purposes only, and may be omitted.

It is also possible to program FOR NEXT loops with variable step size. In
this case, the step size variable should possess the same type of variable as
the numeric variable.

Example:

20
30
40

10 OPENW(1,”P222”,130)
STEP%=1 : START%=1 : END%=3500 : NJUST
FOR COUNTER%=START% STEP STEP% TO END%

STEP%=ROUND(STEP%*SORT(STEP%))
PRN#(1,”COUNTER: ”,COUNTER%,” STEP SIZE: ”,STEP%)50

60
70

NEXT
CLOSE(1)

Subsequent to program execution, the following appears in the ”P222” file:

COUNTER:
COUNTER:
COUNTER:
COUNTER:
COUNTER:
COUNTER:
COUNTER:

1
4
9
20
56
272
3447

STEP SIZE:
STEP SIZE:
STEP SIZE:
STEP SIZE:
STEP SIZE:
STEP SIZE:
STEP SIZE

3
5
11
36
216
3175

178902

CPL – Basic Elements 2–21

1070 073 740-111 (02.11) GB

REPEAT – UNTIL
If the loop abort condition is to be queried only subsequent to the first proc-
essing of the routine the program can be instructed to ”REPEAT this routine
UNTIL the condition has been met.” Accordingly, the REPEAT loop is struc-
tured as follows:

REPEAT <routine> UNTIL <condition>

Example:

.

30
40
50
.

REPEAT
X=X+1
UNTIL X=100

Loop until X = 100

WHILE – DO – END
If the loop abort condition is to be queried prior to the first processing of the
routine, the program can be instructed thus: ”WHILE the condition is satis-
fied, DO the routine.” Accordingly, the WHILE loop is structured as follows:

WHILE <condition> DO <routine> END

Example:

.

30
40
50
.

WHILE SD(9)=0
I=I+1
END

Wait loop until until SD(9) assumed
the value of 0

CPL – Basic Elements2–22

1070 073 740-111 (02.11) GB

2.5.6 Unconditional jump instruction

GOTO
Example:
10 GOTO N20 Jump to block N20
N20 X100
30 GOTO 120 Jump to CPL block 120
.
.
120 GOTO .TARG1 Jump to label .TARG1
.
.
150 .TARG1

Unconditional program jumps are programmed by means of the GOTO in-
struction. Specified jump destinations can be CPL block numbers, NC block
numbers or “labels” (jump markers).

Label
A label that is to serve as a jump destination can be written only within a CPL
block. A label identifier consists of a decimal point followed by ASCII charac-
ters, the first one of which must be a capital letter.

A label may not be a variable.

CPL – Basic Elements 2–23

1070 073 740-111 (02.11) GB

2.5.7 Branch instructions (conditional jump instructions)

IF – THEN – ELSE – ENDIF
A branch instruction can be formulated as follows:

“IF a specific condition is fulfilled, THEN perform the routine, or ELSE per-
form the other routine.”

Accordingly, the instruction is structured as follows:

IF <condition> THEN <routine> [ELSE <alternative routine>] ENDIF

If the ELSE component is omitted, the program, provided that the condition
is not fulfilled, will continue to run immediately after processing the ENDIF
instruction. Because any possible variant of this command comprises a divi-
sion of program flow, this is also termed a branch. Both the THEN and the
ELSE routine comprise program branches that do not have to be processed
in every case.
The condition shares its line with the IF and is concluded by the THEN in that
line.

Similar to the abort conditions for loop instructions, the condition for the IF
instruction may contain arithmetical, trigonometrical and logical links. Here,
too, nesting is possible. Although the IF instruction can also be written with-
out the ELSE instruction, it must always be concluded with an ENDIF in-
struction, because otherwise the end of the routine or that of the alternative
routine will not be recognized. As the placement of the ENDIF instruction de-
pends upon the program processing logic, the computer sometimes fails to
reliably detect and interpret a missing ENDIF instruction. The result will be
confusing or misleading fault messages. It is therefore good practice for the
programmer to verify the completeness of the IF instruction.

Example:
.

20
30
40

10

50
60
70
.

90 .

X = 1
.START
IF X>=100 THEN

GOTO .END
ELSE X=X+2.75

GOTO .START
ENDIF

.END

CPL – Basic Elements2–24

1070 073 740-111 (02.11) GB

CASE–LABEL...LABEL–OTHERWISE–ENDCASE
Within a program it is often necessary to query more than two statuses of
an integer expression or an integer variable. In such cases, a query by
means of an IF instruction is possible only with the use of several nested IF
instructions. Such constructs are not only costly in terms of additional com-
puting time, but also lead to an impairment of program readability and main-
tainability.

The attendant disadvantages can be overcome through the use of the CASE
structure:

CASE <integer expression> OF

LABEL <integer constant>[,<additional integer constant>]

[: <instruction>] <instruction>

:

LABEL ...

:

[OTHERWISE <instruction>

<instruction>

:]

ENDCASE

Subsequent to the CASE instruction, the program branches to the LABEL
instruction in which one of the <integer constants> is identical to the value of
<integer expression>. Now, all instructions up to the next occurrence of the
LABEL or OTHERWISE instruction will be carried out. The program then
branches directly to the ENDCASE instruction.
If a LABEL instruction in which one of the <integer constants> is identical to
the value of <integer expression> does not exist, the program jumps to the
OTHERWISE instruction or (in the event that OTHERWISE was not pro-
grammed) directly to the ENDCASE instruction.

The <instruction> of a CASE construct can include all CPL instructions.
A maximum of 10 CASE constructs can be nested.

Examples:

20
30
40

10

50
60
70
80

CASE A% OF
LABEL 0 : Y=1
LABEL 2

Y=Y*Y
LABEL 4 : Z=Y*Y

Y=Z*Z
OTHERWISE Y=0
ENDCASE

20
30

10

40
50

CASE INTFIELD%(1,2) OF
LABEL 1,2,3 : GOTO .MARK1
LABEL 4,5,6 : GOTO .MARK2

OTHERWISE GOTO .END
ENDCASE

20
30

10

80

CASE (INT(X/Y)+C%) OF
LABEL 1,2 : X=1 : Y=2
LABEL 4,8

ENDCASE

40 X=2 : Y=4
50 LABEL 0
60 X=0 : Y=1

70 OTHERWISE X=0 : Y=0

CPL – Basic Elements 2–25

1070 073 740-111 (02.11) GB

2.5.8 Program remark

REM
For giving remarks on programs.
Characters after the REM instruction until the next end of a line are ignored in
the program’s execution of commands.

REM <remark text>

Example:
.

10
.

REM *** SP TO DEMASK THE STATUS WORD ***

. The colon within a remark is not regarded as an instruction-separat-
ing character (also see section 2.1.2).

CPL – Basic Elements2–26

1070 073 740-111 (02.11) GB

Notes:

Sub-programs and Cycles 3–1

1070 073 740-111 (02.11) GB

3 Sub-programs and Cycles

The NC makes no formal distinction between main programs and sub-pro-
grams. The following conventions apply:
D Sub-programs can contain CPL and DIN blocks.
D Any part program can be invoked as a sub-program from within another

part program.
D A sub-program is incapable of invoking itself as a sub-program (recursive

call not possible).
D A sub-program call must always take place within a separate block.
D During a sub-program call, parameters can be transferred to the respec-

tive sub-programs.

3.1 Calling sub-programs with G, M or P address

Sub-programs can be called from within a DIN block by means of G, P,
and/or M addresses.

For example, the programs for the drilling cycles (99999081 through
99999086) are permanently assigned to the functions G81 through G86.

For further details about sub-programs, please refer to the DIN program-
ming manual.

3.2 Handling modal sub-program calls

Subsequent to their initial call, modal sub-programs will continue to be auto-
matically executed after each traversing movement prescribed by a DIN
block. This will continue until they are deselected via a special G function.

Sub-programs and Cycles3–2

1070 073 740-111 (02.11) GB

3.3 Sub-program call via CALL function

CALL
To execute sub-program calls from within programs that consist exclusively
of CPL instructions, the CPL-proprietary CALL instruction is required. The
CALL instruction must appear in its own separate CPL block. The CALL key-
word is followed by the program name. This, in turn, may be followed by
transfer parameters enclosed in square brackets and, to conclude the in-
struction, the “DIN” identifier (to influence the link process).

Example: Programmed CALL instruction
.

.

50 IF A% = 1 THEN
51
52

CALL P999
ENDIF

Using “DIN” identifier to influence the link process (”Preparing”)
If you conclude a sub-program call by means of CALL with the “DIN” identi-
fier, the control unit will exclude the sub-program thus called from the linking
process. For example, the linking process of a main program that includes
numerous sub-program calls can be significantly accelerated in this manner.

It is strongly recommended to include the “DIN” identifier in the program only
if
D the invoked sub-program consists exclusively of DIN block, and
D the invoked sub-program does not call any additional sub-programs.

In the event that a sub-program containing CPL elements was excluded
from the linking process due to the presence of the “DIN” identifier, the con-
trol will return an appropriate error message at program runtime.

Example: “DIN” identifier in sub-program call

M30

50 IF A% = 1 THEN
51
52

CALL P999
ENDIF

Sub�program �P999" is excluded from linking

Main program

DIN

As an alternative, the “DIN” identifier can be inserted as a remark into the
first line of the sub-program to be called. The control unit will respond by ex-
cluding the program from the linking process.

Example: “DIN” identifier in sub-program to be called

...

N10
N20 ...

Sub�program �P999" is excluded from linking

Sub�program P999:

(DIN)

Sub-programs and Cycles 3–3

1070 073 740-111 (02.11) GB

3.4 Parameter transfer to sub-programs

Parameters which are to be transferred to the sub-program are to be written
in the main program in square brackets and separated by commas when
calling the sub-program. The individual parameters may contain numbers,
variables or arithmetic expressions.

In the sub-program, the parameters transferred during the sub-program call
are always addressed via the variables P1, P2, P3, etc. in accordance with
the sequence of the parameter transfer.
The parameters may also be addressed by means of P1TEST, P2XYZ, etc.
However, the capital letters following P1, P2, etc., will be ignored (P1 =
P1TEST = P1XYZ).

Based on the foregoing, it can be shown that in sub-program P999 in the
example below, P1 has a value of 2.75, P2 assumes the value of the variable
X% at the time of parameter transfer, and P3 has the value 0. In the event that
P2 is to represent an INTEGER value also in the sub-program, this can be
accomplished by appending a ”%” character to P2. This mode of identifying
the type of variable can also be used with the other types of variables.
In the sub-program, the value of the individual parameters can be assigned
to additional variables.

Example: Parameter transfer to a sub-program

1
N1
N2

G1 X[XVALUE%*FACTOR]

M30

50 IF A% = 1 THEN
51
52

CALL P999
ENDIF

[2.75, X%, 0] Sub�program call with parameter transfer.

Main program

Sub�program P999
FACTOR=P1 : XVALUE%=P2% : COMPTAB%=P3%

G22 K[COMPTAB%]

PDIM
If a sub-program
D is to be invoked with a string constant as transfer parameter and
D the invoking program is selected without linking
the PDIM command must be used.

PDIM <parameter name>(<field size>)

If the field size programmed is too small or missing entirely, the control unit
reports the part program error ”invalid variable”.

Example:
 Main program:

N10(DIN)
:
N50 P SP[”TEST”]
:
M30

 Sub-program:

10 PDIM P1$(4)
:
M30

The string variable P1$ has the value TEST.

Sub-programs and Cycles3–4

1070 073 740-111 (02.11) GB

Notes:

System Functions 4–1

1070 073 740-111 (02.11) GB

4 System Functions

CPL is able to access system data of the NC control unit with system func-
tions.

4.1 Standard functions

WAIT
The WAIT function is a mandatory requirement in all situations where cur-
rent machine- or process-related data essential to further program execu-
tion (i.e. for program branching or a calculation) is needed within the
program.

Viewed in terms of elapsed time, ”block processing”, i.e. the operation by
which the individual program lines are analyzed and interpreted, is always
carried out in advance of its execution on the machine. For this reason, the
period of time by which the execution on the machine tool lags behind the
completion of block processing is not constant but dependent upon on a vari-
ety of parameters (feedrate, distance traversed, etc.).
Therefore, if the program is required to respond to a machine-specific actual
status (e.g. axis position) or to an actual process-related status (e.g. signal
at the digital interface), the WAIT instruction must be used to ensure that the
aforementioned time lag equals “zero” at the precise “sampling time“. This is
the only way to ensure that the program will access current data.

WAIT may be programmed alone or together with parameter:
D WAIT without parameters:

block processing will be stopped until all program blocks ahead of WAIT
have actually been executed.

D WAIT with parameters:
block processing will be stopped until a certain condition occurs at the
digital interface between CNC and PLC and/or until a predefined period
of time has lapsed.

WAIT without parameters can be included in programming of both CPL and
NC blocks. (CPL example: “20 WAIT”; NC example: “N20 WAIT”).

. A CPL block that includes the WAIT instruction must not contain a ”:”.
Subsequent CPL instructions must be programmed in a new CPL
block.

WAIT with parameters can be included only in programming of CPL blocks
(e.g. “20 WAIT(,1000)”).

System Functions4–2

1070 073 740-111 (02.11) GB

The instruction has the following structure:

WAIT [([<IC condition>][,[<Duration>][,<Result var>]])]

<IC condition> Specifies the condition which the digital interface be-
tween CNC and PLC is to be checked for. To do so, you
must adhere to the following syntax:
[NOT][(]IC(<parameter>)[)][=<State>]

<parameter>: Transfer parameter of the IC function
(for a description, please refer to the IC
function).

<State>: BOOLEan expression which the result
of the IC function is compared to. If
”=<State>” is not programmed, the
comparison will be made to TRUE.

If the condition is fulfilled, block processing resumes.
<Duration> Waiting time in terms of milliseconds; no decimal places.

May also be an integer arithmetic expression.
If <Duration> was programmed without an <IC condi-
tion>, block processing will stop exactly for the specified
period of time.
If <Duration> is programmed with an <IC condition>,
block processing will stop until the <IC condition> is met,
however, no longer than for the specified duration.

<Result var> Integer variable. The parameter must only be written
with at least one of the other parameters.
The system will store the specified integer variable in a
return value which you can evaluate subsequently. The
following return values are possible:
0 : <IC condition> was already fulfilled at the call.
1 : <Duration> has lapsed completely.
2 : <IC condition> has changed.

Example: WAIT (without parameter)
.

N20
30

X150
WAIT Stop block processing.!

40 XPOS = MPOS(1)–150

N10 X0

50 IF XPOS < 0.0001 THEN
N60 (MSG,Position reached)
70 ENDIF

N100 (MSG still running)

"Position reached" message !
is returned at X = 150.

As a suggestion, test run the example with, and then without WAIT. If no
WAIT is programmed, the ”Position reached” message will not be returned!

System Functions 4–3

1070 073 740-111 (02.11) GB

Examples: WAIT (with parameter)
10 WAIT(,1000,E%) Block processing is stopped for 1000ms.

Subsequently, the E% variable is occupied
by the integer value "1".

10 WAIT(,TIME%) The duration of block�processing hold
depends on the contents of the TIME%
integer variable. No value is returned.

10 WAIT(IC(1,1,1)=TRUE) Wait until the 2nd axis�related input signal of
the1st axis is set.

10 WAIT(IC(2,0,2)=(E1? OR E2?)) Wait until the 3rd channel�related input
signal of the 2nd channel has reached the
value of the logic expression (E1? OR E2?).

10 WAIT(NOT IC(3,2,1),,C%) Wait until the 4th spindle�related input signal
20 IF C%=0 THEN of the 1st spindle has reached the value of
30 DSP(10,10,”COND. ALREADY OK”) FALSE. The C% variable supplies either the
40 ENDIF value "0", if the condition was already met

 when WAIT was called, or the value "2" if the
condition was only met during waiting.

10 WAIT(IC(4,4,1)=E7?,250,ERG%) Wait until the 5th axis�related output signal
20 IF ERG%=0 THEN of the 1st axis takes on the value the E7?
30 DSP(10,10,”DID NOT WAIT ”) variable or 250ms have lapsed.
40 ENDIF The ERG% variable will supply either the
50 IF ERG%=2 THEN value "0" if the condition was already
60 DSP(10,10,”WAITED >250ms”) fulfilled when WAIT was called, or the value
70 ENDIF "1" if the duration has lapsed, or the value

"2" if the condition was met during waiting.

4.2 Axis and coordinate positions

CPL offers you various functions for inquiring the current positional values of
axes and coordinates.

A distinction between the following functional types is made:
D functions, which are based on physical axes or logical coordinates

(CPOS, AXO, WPOS, CPROBE).
D functions, which are based on physical or logical axes (MPOS, PPOS,

PROBE).
D functions, which are based on physical axes (SPOS, APOS).

To use these functions, you should know
D how to address an axis: by ”physical” or ”logical” axis index or axis name

or coordinate name
D how to interpret the transferred positional value.

. Additional information on the topics ”Coordinates, Axes and Trans-
formations” can be found in the user’s manual “Description of Func-
tions”, refer to section 1.6.

System Functions4–4

1070 073 740-111 (02.11) GB

Definition of physical and
logical axis names

The term physical axis includes all axes which are connected to the
SERCOS interface
In MACODA parameter 1003 00001 they receive a system-wide unique axis
address (=physical axis name) e.g.: ”X”, ”Y”, ”X1”, ”A” .

Each physical axis has a physical axis index that is valid system-wide ac-
cording to the index of the MACODA individual parameter (1...64), under
which the axis is registered in the MACODA.
If the SERCOS axes with their axis addresses are configured with spaces in
the MACODA index (1...64), then the physical axis index corresponding to
the space cannot be assigned a physical axis:

. Therefore the number of physical axes is smaller than or equal to the
physical axis index of the axis configured in the system last.

If you assign a physical axis to a machining channel by MACODA parameter
1003 00002, the control unit will automatically assign a ”logical axis index”
to this axis.
This logical axis index is specific to the respective channel, always starts
with the value ”1” for each channel, and is incremented by the value ”1” for
each additional axis configured on this channel. In this context the following
sequence applies:
The 1st logical axis is always the axis with the lowest physical axis index
of all axes configured on the channel.

Furthermore, the logical axes in the MACODA parameter 7010 00010 can
be assigned a logical axis name for a specific channel.
Channel axes which have not been assigned an explicit logical axis name
are implicitly assigned the physical name of the respective axis.

The channel configuration can be changed during run time through the func-
tions of the axis transfer (G510 ff.). When doing so, new logical names can
be assigned, which must be previously defined in the MACODA parameter
7010 00020 ”Optional axis designation”.
The logical axis indexes for the respective channel are newly defined after a
change has been made to the axis configuration.

. The ”physical axis index” and the ”physical axis name” are fixed and
valid within the whole system.
The ”logical axis index” and the ”logical axis name” are valid related
to the channel and can be changed during run time.

System Functions 4–5

1070 073 740-111 (02.11) GB

1.Example: Configuration and assignment of the axis names to channels

physical

axis index
physical axis name

MACODA parameter
1003 00001

X
Y
Z
X2
Y2
Z2
U
A

1
2
3
4
5
6
7
8

!
!
!
!
!
!
!
!

logical
axis index

1
2
3
4
5
6
7
8

!
!
!
!
!
!
!
!

1
1
1
2
2
2
1
3

!
!
!
!
!
!
!
!

Channel assignment
MACODA parameter

1003 00002 Channel 1

X
Y
Z
U_CH1
–
–
–
–

Channel 2

X2
Y2
Z2
–
–
–
–
–

Channel 3

A
–
–
–
–
–
–
–

–
–
–
U_CH1
–
–
–
–

logical axis name
MACODA parameter

 7010 00010[1]

Axis names on the channels
logical

axis index
1
2
3
4

1
2
3

1

logical
axis index

logical
axis index

Definition of synchronous
and asynchronous axes

Axes that are assigned to one channel are called synchronous axes
(machining axes). The synchronous axes of a channel are related to each
other in an interpolated manner.

Axes that are not assigned to a specific channel are called asynchro-
nous axes (auxiliary axes).

. By using the functions for axes exchange (G510 ff.), synchronous
axes can be switched to asynchronous axes and vice versa.

Definition of coordinates
for active axis transformation

In the part program there are always coordinates programmed that are inter-
polated during program processing. The so-called axis transformation cal-
culates the command values for the respective axes from the current
coordinate values.

The advantage of this procedure is that the part programs can be pro-
grammed independently from the structure of the machine (kinematics).
The prerequisite is, however, that the respective axis transformation which
takes the kinematics of the machine into consideration is available.

System Functions4–6

1070 073 740-111 (02.11) GB

Please differentiate:
D No axis transformation active:

Logical axes and coordinates are identical, i.e. the 1st logical axis is as-
signed to the 1st coordinate of the channel, etc.
The coordinates which are directly assigned to a logical axis are also
called pseudo coordinates.
The ”name” of a coordinate then takes on the name of the logical axis to
which it is assigned.

D Axis transformation active:
There is generally no linear relation between the logical axis and the coor-
dinates. In certain cases a coordinate can influence several axes and
several coordinates can affect the same axis simultaneously.
These kinds of coordinates are called working range coordinates.

The names of the working range coordinates are set in the MACODA param-
eter 7080 00010 specific to the channel. The names for the logical axes and
the working range coordinates within a channel must be unique.
The coordinate index is the successive index in which all the coordinates
on the current channel and the working range coordinates defined through
active axis transformation as well as any pseudo coordinates that exist are
taken into account in the order of their appearance.

During active axis transformation, a channel can be assigned further axes in
addition to the logical axis linked to the transformation. These are pro-
grammed as pseudo coordinates (see the following figure: e.g. 5-axis trans-
formation).

Physical axis names:
MACODA parameter 1003 00001

Logical axis names:
MACODA parameter 7010 00010

A1 A2 A3 ... A7 A8 ... A10 A11 ... A63 A64

X Y Z U V B C

x y z phi theta
Coordinate names:

MACODA parameter 7080 00010

Axis and coordinate names (Example: active axis transformation + pseudo coordinates)

Coordinates configuration

Individ. param. 5 Log. axis index

Individual parameter

Coordinate indicator x y z U Vphi theta

Individ. param. 5 Phys. axis index

working range coordinates Pseudo coordinates

Programming level

1 2 3 ... 7 8 ... 10 11 ... 63 64

1 2 3 4 5 6 7

1 2 3 4 5 6

Axis transformation

Coordinate index 1 2 3 6 74 5

–

8

Axis configuration

–

8

System Functions 4–7

1070 073 740-111 (02.11) GB

Overview of all functions for determining the axis and coordinate positions

Position last programmed: CPOS
Position last programmed: CPROBE
Current G92 shift: AXO

Interpolated machine position: MPOS

Part program
Program coordinate system: PCS

Calculation of the workpiece coordinates
Program coordinate shift
Contour offset
Scaling

Workpiece coordinate system: WCS Measuring probe value: PPOS

Interpolated workpiece position: WPOS
Interpolation
Workpiece coordinate system: WCS

Coordinate transformation
Basic workpiece coordinate system: BCS

Axis transformation
Axis coordinate system: ACS

System axis command values: SPOS
Axis zero point shift
Machine coordinate system: MCS

Actual axis value: APOS
Actual axis position with a connected PROBE
switching measuring probe

Drives (axes)

Block preparation

Block execution

Measuring units for supplied axis and coordinate positions

Synchronous linear axes and
translatory working range coordinates: ”mm” or ”inch”;

depending on the momentary
active setting (G70, G71) on the
invoking channel.

Synchronous rotary axes and
rotatory working range coordinates: ”degree”
Asynchronous linear axes: ”mm”
Asynchronous rotary axes: ”degree”

System Functions4–8

1070 073 740-111 (02.11) GB

4.2.1 Functions for coordinates or physical axes

The functions AXO, CPOS, CPROBE and WPOS always supply coordinate
values.
The coordinates are selected by entering:
D the coordinate indexes or names or
D the physical axis index or axis name (only for pseudo coordinates)

The following is to be noted:
D The coordinate index for working range coordinates on the channel is al-

ways fixed.
D Pseudo coordinates, in comparison, can be added or transferred to a

channel through the functions of the axis transfer. In this process the
coordinate index of other pseudo coordinates on the channel can be
changed.
Through the possibility of specifying the physical axis index, it is also pos-
sible with pseudo coordinates to work with fixed indexes.

D When specifying a physical axis that is not assigned to any pseudo coor-
dinate, a run time error is reported.

D If there is no active axis transformation, then all coordinates are pseudo
coordinates. Thus access via the physical axis index is possible.

Regarding the functions AXO and CPOS, which supply the data for block
preparation, or refer to the condition of the block preparation (CPROBE),
only those coordinates that belong to the invoking channel can be queried. If
an attempt is made to address a coordinate foreign to the channel, then a run
time error occurs.

The function WPOS, which supplies the actual workpiece coordinates, may
also be invoked by foreign channels, but only when dealing with pseudo
coordinates.

Transfer parameters for the functions AXO, COF, CPOS, CPROBE, and WPOS:
<axis selection> Index or name of the coordinate:

A name is interpreted as a coordinate name. Only if
no according coordinate name exists, it is interpreted
as a physical or a logical axis name.
An index is interpreted according to the given
<selection type>.
Programming an axis/coordinate that is not config-
ured leads to a run time error.

<selection type> optional:
Determines how an index programmed under <axis
selection> is interpreted:

”0”: physical axis index
”1”: coordinate index (default)

The index is interpreted as a coordinate index with-
out <selection type>!

System Functions 4–9

1070 073 740-111 (02.11) GB

<channel> optional: channel number (only for WPOS).
If coordinates are to be read from foreign channels, and
if they are to be addressed by their index or names, then
the number of the channel that the coordinate is cur-
rently assigned to is entered in <channel>.
If no channel is given, then the coordinates of the current
channel will be accessed. If a physical axis is addressed
(by name or index) and a channel is entered at the same
time, then an error message will be generated.

AXO
AXO supplies the last activated G92 shift for a coordinate at the time of block
preparation, i.e. it supplies the last activated shift at the time of program in-
terpretation.

The instruction has the following structure:

AXO(<axis selection>[,<selection type>])

. AXO only allows access to shift values of its own channel. Asynchro-
nous axes have no G92-shift, thus AXO does not apply to asynchro-
nous axes!

Example:
Channel 1 as in the example configuration from page 4–5.
No axis transformation is active, i.e. logical coordinates correspond to log-
ical axes:
N10 G1 G90 X100 Y200 F1000
N20 G92 X75 Y125
30 XD = AXO(”X”)

40 YD = AXO(2,0)

50 X2D = AXO(4,0)

XD is assigned the last activated G92
shift of the X coordinate on the cur-
rent channel (XD=100–75=25)

YD is assigned the last activated G92
shift of the 2nd physical axis
(YD=200–125=75)

Run time error, since the 4th physical
axis is assigned to channel 2

!

!

!

CPOS
CPOS supplies the position of the last programmed (in absolute units) coor-
dinate in connection with the program coordinate system PCS at the time of
block preparation. In other words, the position last programmed at the time
of the program interpretation is supplied.

Please regard the following condition:
D If switched over to a workpiece coordinate system between program-

ming the coordinate and the inquiry of the position, then the supplied
value already takes the new workpiece coordinate system into conside-
ration.

System Functions4–10

1070 073 740-111 (02.11) GB

The instruction has the following structure:

CPOS (<axis selection>[,<selection type>])

. CPOS only allows access to coordinates of its own channel. Thus it is
not possible to inquire about positions of asynchronous axes via
CPOS!

Example:
Channel 2 as in the example configuration from page 4–5.
No axis transformation is active, i.e. logical coordinates correspond to log-
ical axes.

N1 G0 G90 X2=150 Y2=100
02 X2VALUE=CPOS(1)

N3 G91 X2=10
04 X2VALUE=CPOS(1,1)

N5 X2=5 Y2=10
06 Y2VALUE=CPOS(”Y2”,1)

07 X2VALUE=CPOS(”X2“)

08 XVALUE=CPOS(1,0)

X2VALUE is assigned the programmed abso-
lute position of the 1st coordinate on the
current channel (X2VALUE = 150)

X2VALUE is assigned the programmed abso-
lute position of the 1st coordinate on the
current channel (X2VALUE = 160)

Y2VALUE is assigned the programmed abso-
lute position of the coordinate that the
physical Y2 axis is assigned to
(Y2VALUE = 110)

X2VALUE is assigned the programmed abso-
lute position of the X2-coordinate on the
current channel (X2VALUE = 165)

Run time error: Access to the 1st system
axis of channel 2 is not allowed (axis is
assigned to channel 1)

!

!

!

!

!

CPROBE
If a switching measuring probe is connected to the axes of a channel and a
measurement is launched, CPROBE can read the measured value for any
one coordinate.

Please regard the following conditions:
D CPROBE only allows access to coordinates of its own channel. There-

fore you cannot inquire about the positions of asynchronous axes!
D The measurement is activated with the function ”Probe input” G75.
D Since all the measured values are axis values based on the axis zero

point coordinates of the machine coordinate system MCS, a conversion
to the coordinate level takes place when reading the values. In this pro-
cess all transformations and shifts last programmed at the time of block
preparation are taken into consideration, including the lead-screw error
and cross-compensation.
The supplied value is based on the last activated program coordinate
system PCS.

D Because all axes/coordinates can be linked to each other within the
transformation chain – especially in the case of active axis transforma-
tions – the measuring probe in the MACODA parameter 1003 00012
must be entered as ”can be activated” for all axes of the channel. Other-
wise a run time error will occur when invoking CPROBE.

D You can test launching the measuring probe on the channel with the func-
tion SD(9).

The instruction has the following structure:

System Functions 4–11

1070 073 740-111 (02.11) GB

CPROBE (<axis selection>[,<selection type>])

. CPROBE cannot be used together with the function ”On-the-fly mea-
surement” G275, since only one single axis is ever measured with
”On-the-fly measurement”.

Example:
Channel 1 as in the example configuration from page 4–5.
No axis transformation is active, i.e. logical coordinates correspond to log-
ical axes:
N10 G75 X100 Y100 Z50
20 IF SD(9) = 1 THEN
N30 (MSG, Measuring probe was not deflected!)
40 GOTO .ERROR
50 ELSE
60 ZMEAS = CPROBE(3)

70 ENDIF
..

The variable ZMEAS is as-
signed the value of the
3rd coordinate of the mea-
sured position.

!

WPOS
WPOS supplies the current interpolated command position at the time of
program interpretation referring to the current workpiece coordinate system
WCS for a coordinate.

Please regard the following conditions:
D With WPOS it is possible to inquire about coordinates from foreign

channels. The current workpiece coordinate system is always that of the
channel to which the coordinate is currently assigned.

D For asynchronous axes WPOS always acts like SPOS (p. 4–18).
D In most cases of application, the command position should not be deter-

mined at the time of block preparation, but rather at the time of block exe-
cution. In this case, WPOS should be programmed in its own block
”WAIT” (see Section 4.1, standard functions WAIT).

. Using WPOS without WAIT does not supply clearly predictable val-
ues, as it is not exactly known how far the block execution ”lags be-
hind” the block processing.

. When accessing axis values of a foreign channel it may be necessary
to meet synchronization measures in order to measure a defined posi-
tion!

The instruction has the following structure:

System Functions4–12

1070 073 740-111 (02.11) GB

WPOS(<axis selection>[,<selection type>[,<channel>]])

Example:
Channel 2 as in the example configuration from page 4–5.
No axis transformation is active, i.e. logical coordinates correspond to log-
ical axes:
10 WAIT
20 Z2POS = WPOS(3,1,2)

100 WAIT
110 YPOS = WPOS(”Y”)

120 XPOS = WPOS(1)

Z2POS is assigned the current inter-
polated workpiece position of the 3rd

logical coordinate of the 2nd channel
(Z2 axis)

YPOS is assigned the current interpo-
lated workpiece position of the log-
ical Y coordinate on the current
channel

XPOS is assigned the current interpo-
lated workpiece position of the 1st

logical coordinate on the current
channel

!

!

!

System Functions 4–13

1070 073 740-111 (02.11) GB

4.2.2 Functions for physical or logical axes

The functions MPOS, PPOS and PROBE always supply axis values.

Access via physical index or axis names is intended for axes where the log-
ical axis index on the channel has changed because an axis has been ex-
changed.

. Pseudo coordinates are always linked to certain logical axes, but in
the case of an active axis transformation the logical axis index and the
logical coordinate index can be different!

Transfer parameters of the functions MPOS, PPOS, PROBE:
<axis selection> Index or name of a physical or logical axis:

Name: is initially interpreted as a logical axis name.
In none exists, the physical axis name is taken.
Index: is interpreted according to the given <axis
type>.
Programming an axis that is not configured leads to a
run time error.

<axis type> optional:
Determines how an index programmed under <axis
selection> is interpreted:

”0”: physical axis index
”1”: logical axis index

The index is interpreted as a logical axis index with-
out <axis type>!

<channel> optional: channel number (only for MPOS).
If the axis value of a foreign channel is read and the
axis is to be addressed by its logical index or name,
then the channel number of the axis must be entered.
If <channel> is not given, then the axes of the cur-
rent channel are accessed.
Programming a physical axis and a channel number
lead to an error message.

System Functions4–14

1070 073 740-111 (02.11) GB

MPOS
The MPOS function supplies the currently interpolated command position of
an axis referred to the machine zero point of the machine coordinate system
MCS at the time of program interpretation.

Please regard the following conditions:
D The result of MPOS always corresponds to the SPOS function.
D With MPOS it is also possible to inquire about axis values from foreign

channels.
D If there are no axis zero point shifts or axis transformations, MPOS and

WPOS always supply identical values.
D In most cases of application the command position should not be deter-

mined at the time of the block preparation, but rather at the time of block
execution. In this case, WAIT should be programmed in its own block be-
fore MPOS (also see Section 4.1 standard functions WAIT).

. Using MPOS without WAIT does not supply clearly predictable values,
as it is not exactly known how far the block execution ”lags behind”
the block processing.

. When accessing axis values of a foreign channel, it may be necessary
to meet synchronization measures in order to measure a defined posi-
tion!

The instruction has the following structure:

MPOS (<axis selection> [,<axis type> [,<channel>]])

Example:
Channel 2 as in the example configuration from page 4–5.
No axis transformation is active, i.e. logical coordinates correspond to log-
ical axes:

N10 G0 G90 X2=150 Y2=100
20 WAIT
30 X2VALUE = MPOS(”X2”)

N40 G91 X2=10 Y2=10
50 WAIT
60 X2VALUE = MPOS(1,1)

70 Y2VALUE = MPOS(”Y2”,1,2)

80 XVALUE = MPOS(1,0)

X2VALUE is assigned the currently
interpolated axis position of the
X2 axis

X2VALUE is assigned the currently
interpolated axis position of the
1st logical axis on the current
channel (X2 axis)

Y2VALUE is assigned the currently
interpolated axis position of the
logical Y2 axis on the 2nd channel

XVALUE is assigned the currently
interpolated axis position of the
1st physical axis

!

!

!

!

System Functions 4–15

1070 073 740-111 (02.11) GB

PPOS
If switching measuring probes are connected, then the current axis actual
position of a synchronous axis is queried in the switch point of the measuring
probe.

PPOS considers the following compensations:
D axis zero shifts

(G54...G59, G154...G159, G254...G259, G160...G360)
D tool compensations (Hx, G145...G845, G147...G847)
D program coordinate shift (G168, G268)
D lead-screw error compensation and cross-compensation

The following are not considered
D axis transformation (COORD(n))
D coordinate transformations (G138, G352, G354...G359)
D scaling (G37, G38)
D programmed contour shift (G60)

Please regard the following conditions:
D PPOS may only be used for axes of its own channel.
D If there is no axis transformation or coordinate transformation, the sup-

plied value is based on the last programmed workpiece coordinate sys-
tem WCS.

D You can enter which axes are to be considered during a measurement in
the MACODA parameter 1003 00012. The measurement can be acti-
vated with the function ”Probe input” G75, as well as with ”On-the-fly
measurement” G275.
With G75, those axes of the channel are taken into consideration for
which the MACODA parameter has the value ”1” . With G275, only the
specified axis is measured.

D The measured values are read with functions PPOS and PROBE with
the function ”Measuring fixed stop” G375.

D You can test launching the measuring probe on the channel with the func-
tion SD(9).

The instruction has the following structure:

PPOS (<axis selection>[,<axis type>])

. It is not possible to inquire about positions of asynchronous axes!

Example:
Channel 3 as in the example configuration from page 4–5.
No axis transformation is active, i.e. logical coordinates correspond to log-
ical axes:

N10 G1 G75 A250 F500
20 IF SD(9) = 1 THEN
N30 (MSG, Measuring probe was not deflected!)
40 GOTO .ERROR
50 ELSE
60 AMEAS = PPOS(1,1)
70 ENDIF
..

! The measured position of the 1st logical axis on
the channel is assigned to the AMEAS variable.

System Functions4–16

1070 073 740-111 (02.11) GB

PROBE
In contrast to the function PPOS, the function PROBE supplies the axis val-
ues which are based on the axis zero point coordinates of the machine coor-
dinate system MSC.

Please regard the following conditions:
D PROBE may only be used for axes of its own channel.
D Only lead-screw error compensation and cross-compensation are taken

into consideration.
D You can test launching the measuring probe on the channel with the func-

tion SD(9).
D The measured values are read with functions PPOS and PROBE with

the function ”Measuring fixed stop” G375.

. It is not possible to inquire about positions of asynchronous axes!

The instruction has the following structure:

PROBE(<axis selection>[,<axis type>])

Example:
Channel 2 as in the example configuration from page 4–5.
No axis transformation is active, i.e. logical coordinates correspond to log-
ical axes:

N70 G75 Y2 250
80 IF SD(9)=1 THEN
N90 (MSG, Measuring probe was not deflected!)
100 GOTO .ERROR
110 ELSE
120 Y2MEAS=PROBE(2)
130 ENDIF
.
.

! The measured actual position of the 2nd logical axis
on the channel (here: Y2-axis on channel 2) is as-
signed to the Y2MEAS variable.

System Functions 4–17

1070 073 740-111 (02.11) GB

4.2.3 Functions for use with physical axes only

The functions SPOS and APOS always supply axis values.

They can be accessed via the physical axis index or the physical axis
names. It is possible to access axes on the same channel as well as on for-
eign channels.

Transfer parameter for the functions APOS, SPOS:
<axis selection> Index or name of a physical axis.

Programming an axis that does not exist will cause a
run time error.

APOS
APOS supplies the actual axis value of a physical axis that is currently is-
sued at the time of block preparation of the CPL block in which APOS is pro-
grammed.

Please regard the following conditions:
D The supplied value refers to the machine zero point (not identical with the

reference point, which also refers to the machine zero point).
D In most cases of application the actual position should not be determined

at the time of block preparation, but rather at the time of block execution.
In this case, WAIT should be programmed in its own block before APOS
(also see Section 4.1, standard functions WAIT).

. Using APOS without WAIT does not supply clearly predictable values,
as it is not exactly known how far the block execution ”lags behind”
the block processing.

. When accessing axis values of a foreign channel it may be necessary
to meet synchronization measures in order to measure a defined posi-
tion!

The instruction has the following structure:

APOS(<axis selection>)

<axis selection>: physical axis index or
physical axis name

Example:
Channels as in the example configuration from page 4–5.

30
.
.

! The current actual axis value of the 4th physical axis in
the system (X2 axis on channel 2) is assigned to the
ACT4 variable.

ACT4=APOS(4)

50
.
.

! The current actual axis value of the 8th physical axis in the
system (A axis on channel 3) is assigned to the ACT8
variable.

ACT8=APOS(“A”)

System Functions4–18

1070 073 740-111 (02.11) GB

SPOS
SPOS supplies the axis command value of a physical axis that is currently
issued at the time of block preparation of the CPL block in which SPOS is
programmed.

Please regard the following conditions:
D The supplied value refers to the machine zero point (not identical with the

reference point, which also refers to the machine zero point).
D SPOS and MPOS always supply identical values, as MPOS is based on

the machine zero point (axis zero point coordinates of the machine coor-
dinate system MCS).

D If there are no axis zero point shifts, axis transformations or coordinate
transformations, SPOS and WPOS always supply identical values.

D For asynchronous axes SPOS always acts like WPOS (p. 4–11).
D In most cases of application the command position should not be deter-

mined at the time of block preparation, but rather at the time of block exe-
cution. In this case, WAIT should be programmed in its own block before
SPOS (also see Section 4.1, standard functions WAIT).

. Using SPOS without WAIT does not supply clearly predictable values,
as it is not exactly known how far the block execution ”lags behind”
the block processing.

. When accessing axis values of a foreign channel it may be necessary
to meet synchronization measures in order to measure a defined posi-
tion!

The instruction has the following structure:

SPOS(<axis selection>)

<axis selection>: physical axis index or
physical axis name

Example:
Channels as in the example configuration from page 4–5.

30
..

! The current axis command value of the 1st physical
axis in the system (X axis on channel 1) is assigned
to the POS1 variable.

POS1=SPOS(1)

50
..

! The current axis command value of the 5th physical
axis in the system (Y2 axis on channel 2) is assigned
to the POS5 variable.

POS5=SPOS(“Y2”)

System Functions 4–19

1070 073 740-111 (02.11) GB

4.3 Axis zero shift operations

To set up and modify an axis ZS table the following CPL instructions are nec-
essary:
D FXC: access to the axis zero point shift values
D FXCR: setting up a new axis ZS table
D FXDEL: deleting a column in the axis ZS table
D FXINS: inserting a column to the axis ZS table

FXC
Provides direct access to the axis zero shift values (axis ZS values) in the
NC.

Both read- and write-access is possible for
D ASCII tables with definable names for axis ZS values
D external axis ZS values.
D the database tables V1, V2 and V3 (compatible with older versions)

Furthermore, the sum of all effective (last programmed) axis ZS values
of an axis can be requested.

. In the case of external axis ZS values, the function supplies a CPL er-
ror message for axes foreign to the channel.

The instruction has the following structure:

FXC(<axis selection>[,<G address>[,<axis ZS table>
[,<unit>]]])

<axis selection>: Axis ZS tables: column index (1..64) or
 logical axis name.
External axis ZS: logical axis index (1..8)
 or logical axis name.
The logical axis index can also be programmed
with negative sign (incremental specification).
The addressed table can be read or overwritten.
When overwriting it is possible to:
<axis selection> positive: the programmed value
is incorporated into the axis ZS table and replaces
the old value.
<axis selection> negative: the programmed
value is added to the old table value (incremental
specification).
Program only <axis selection>: queries all active
axis ZS values.
An axis name can alternately be given instead of
a column index. This determines the correspond-
ing column in the table. A ”–” sign can be put in
front of names for an incremental specification. If
the syntax of an axis name begins with ”–”, then
FXC may not be programmed with axis names.

System Functions4–20

1070 073 740-111 (02.11) GB

<G address>: axis ZS table: 54..59 (G54..G59)
154..159 (G154..G159)
254..259 (G254..G259)

external axis ZS: 160 (G160)
 260 (G260)

360 (G360)

<axis ZS table>: axis ZS table: File name with path
1=V1 (database table)
2=V2 (database table)
3=V3 (database table)

external axis ZS: 0

<unit>: axis ZS table: 0: mm
2: inch

external axis ZS: Non-programmable!
G70 active: inch
G71 active: mm

Each table has got a table unit. This is specified only
once when setting up a new table according to the
MACODA parameter 9020 00010.
During read-access the value is converted from the
table unit into the programmed <unit>. If no <unit> is
programmed, the value read determines the table
unit.
During write-access the value is interpreted i.a.w. the
programmed <unit> and standardized to the table
unit, then added to the table. If no <unit> is pro-
grammed, the value is written directly into the table
without conversion.

Examples:

!

!

1 FXC(2,54,1)=80

2 FXC(1,54,TAB$)=20

For the 2nd logical axis the value 80 is stored in
the database axis ZS table V1 under G54.

For the 1st logical axis the value 20 is stored in
the ASCII table “/usr/user/NPV1.npv” under G54.

0 TAB$=”/usr/user/NPV1.npv”

3 FXC(–1,54,TAB$)=2 The value 2 is added to the 1st logical axis under
G54.

!

4 FXC(”Z”,54,TAB$,2)=10/25.4 The result of 10/25.4 is recorded in inches for the
Z axis under G54.

!

5 FXC(”Z”,160,0)=40 The external shift G160 is assigned the value 40
for the Z axis.

!

6 FXC(”–Z”,254,TAB$)=3 The value 3 is added to the Z axis under G254.!

7 FXC(”–U_CH1”,54,TAB$)=20 The value 20 is added for the U_CH1 axis under
G54.

!

8 FXC(”Z”,255)=40 The value 40 is filed for the Z axis in the active
axis ZS table under G255.

!

9 X_SUM=FXC(”X”) The sum of all active zero point shifts for X axis
is assigned the variable X_SUM.

!

System Functions 4–21

1070 073 740-111 (02.11) GB

FXCR
Sets up a new axis ZS table.

The instruction has the following structure:

FXCR(<channel or layout>,<TabName>[,<classification>])

<channel or layout>: Channel number or name of table layout.
According to the channel number the number
of columns, the names of the axes and the
type of axis are determined, setting up the
table accordingly.
The following applies for channel number u0:
a column is set up for each channel axis in the
axis ZS table.
For channel number = 0, the following applies:
a column is set up for each system axis.
Alternately a table layout including a path can
be used as a sample.

<TabName>: Axis ZS table name
<classification>: Defining the table feature:

0: no strict classification
1: strict classification
If <classification> is not programmed, it is oc-
cupied by ”0” (default value).

. In order to edit the axis ZS table with the table editor, the file name ex-
tension according to the settings in MACODA parameter 3080 00200
should be programmed.

FXDEL
Deletes a column in an axis ZS table.
The instruction has the following structure:

FXDEL(<TabName>,<axis desig>)

<TabName>: Axis ZS table name
<axis desig>: Logical or physical axis name or column index of the

table column that is to be deleted.
Example: FXCR, FXDEL and FXINS

10 NPV_BASIS$=”/usr/user/NPV_TAB_K2.npv”
11 IF FILEACCESS(NPV_BASIS$)=–1 THEN
12 FXCR(2,NPV_BASIS$)

13 FXDEL(”NPV_TAB_K2.npv”,2

14 FXINS(”NPV_TAB_K2.npv”,3,”U”,0)
15 ELSE
16 IF FILEACCESS(”NPV2_TAB_K2.npv”)=–1 THEN

17 FXCR(NPV_BASIS$,”NPV2_TAB_K2.npv”)
18 ENDIF
19 ENDIF

!

!

Insert column 3 for
rotary axis (U) in
axis ZS table
”NPV_TAB_K2.npv”.

!

!

Create axis ZS
table
”NPV2_TAB_K2.npv”
according to the
given ”/usr/user/
NPV_TAB_K2.npv”
layout.

Create axis ZS
table
”NPV_TAB_K2.npv”
for channel 2.

Delete column 2
from axis ZS table
”NPV_TAB_K2.npv”.

System Functions4–22

1070 073 740-111 (02.11) GB

FXINS
Sets up a new column in front of an existing column of an axis ZS table.

The instruction has the following structure:

FXINS(<TabName>,<position>,<axis name>[,<axis type>])

<TabName>: Axis ZS table name
<position>: Logical or physical axis name or column index of the

table column at the insert position.
The new column is inserted in front of the insert posi-
tion.

<axis name>: Logical or physical axis name of the new table column.
<axis type>: optional: axis type of the new axis:

0: rotary axis
1: linear axis (default value)

System Functions 4–23

1070 073 740-111 (02.11) GB

4.4 Tool compensations

TC
Access tool compensation data.
Both read- and write-access is possible for
D ASCII geometry tables with definable names
D external geometry compensation values.
D the database tables K4 and K5

The instruction has the following structure:
TC(<selection>[,<group>[,<table>[,<unit>]]])

<selection> – standard compensation 1:
2:

Length compensation H
Radius compensation D

– external compensation
(1st external compensa-
tion)

1:

2:

Length compensation L(1)3
or Hext
Radius compensation Rext

– general compensation
(2nd external compensa-
tion)

1:
2:
3:
4:
5:
6:

7:
8:
9:

Length compensation L(2)3
Radius compensation R
Length compensation L(2)1
Length compensation L(2)2
Tool orientation TO
Compensation type (read
access only)
Euler angle ϕ (only absolute)
Euler angle ϑ (only absolute)
Euler angle ψ (only absolute)

<group> – standard compensation 1..48: for compensation
group

– external compensation (1st

external compensation)
145..845: for G145..G845

– general compensation (2nd

external compensation)
147..847: for G147..G847

<table> – standard compensation file name with
path:
4:
5:

name of table

K4
K5

– external compensation
(1st external compensation)

0: no name

– general compensation
(2nd external compensation)

0: no name

<unit> – standard compensation 0:
2:

mm
inch

– external compensation
(1st external compensation)

not pro-
grammable

G70 active: inch
G71 active: mm

– general compensation
(2nd external compensation)

not pro-
grammable

G70 active: inch
G71 active: mm

System Functions4–24

1070 073 740-111 (02.11) GB

The addressed table can be read and overwritten. During overwriting, the
old value can be replaced by the new value or the new value added to super-
impose the old value. This can be determined by means of <selection>:
If <selection> is positive, the programmed value is incorporated into the
table. If <selection> is negative, the programmed value is added to the table
value.
If the sum of the active tool compensation values is requested, only the para-
meter <selection> needs to be programmed.

Each table has a table unit. Each table has a table unit. This is determined
when creating a new table according to MACODA parameter 9020 00010.
During read-access the value is converted from the table unit into the pro-
grammed <unit>. If no <unit> is programmed the value read determined the
table unit.
During write-access the value is interpreted i.a.w. the programmed <unit>
and standardized to the table unit, then added to the table. If no <unit> is
programmed, the value is written directly into the table without conversion.

Examples:
10 !TC(1,10,5)=A

TC(2,10,5)=B
In the tool compensation table K5 the values of the vari-
ables A and B are assigned in the compensation group
10 for H and D.

20

30 !TC(–1,10,4)=A
TC(–2,10,4)=B

In the tool compensation table K4 the values of the vari-
ables A or B are added in the compensation group 10
for H and D.

40

50 !A=TC(1,8,4)
B=TC(2,8,4)

From the tool compensation table K4 the values of com-
pensation group 8 for H and D are copied into the vari-
ables A and B.

60

70 !TC(1,17)=A The length compensation value standing in variable A is
transferred to compensation group 17 of the compensa-
tion table last selected.

80 !B=TC(2) The radius compensation value valid at the time of the
block processing is assigned to variable B in the unit of
the active measuring system.

90 !TC(1,745,0)=A The value of variable A in mm is assigned to the exter-
nal length compensation G745.

100 !B=TC(2,345,0) The radius compensation value valid for the external
compensation G345 is stored in variable B.

110 !A=TC(2,39,”/usr/user/GK33”) From the ASCII table GK33 in the direc-
tory ”/usr/user” the radius compensation
value of the compensation group 39 is
assigned to variable A.

25 !TC(1,10,5,0)=25.4
TC(1,11,5,2)=1

In the tool compensation table K5, the same values for
H, 25.4 mm and 1 inch, are recorded in the
compensation groups 10 and 11.

26

N90 G70

95 !TC(3,347,0)=A The general geometry compensation G347 is assigned
the variable value A for length compensation L(2)1 in
inch.

N85 G71

N91 WAIT

System Functions 4–25

1070 073 740-111 (02.11) GB

4.5 Access to the tool database

TDA
If the internal tool database is configured, read- or write-access to individual
fields is possible by TDA.

The instruction has the following structure:

TDA(<sector no.>,<place no.>,<field no.>
[,<Tool tab no.>])

<sector no.>: Sector number (configuration-specific)
<place no.>: Place number in the given sector

(configuration-specific)
<field no.>: Field number within the data set (1...49)
<Tool tab no.>: Number of the tool table, where the value 1 is allowed

only.

CAUTION
Inconsistency of data types possible!
A data set contains both fields of the ”integer” type and fields of the
”string” type. Data which are to be assigned to a field must be of the
appropriate data type!
Make sure that variables used in instructions are of the same type
as the field (please refer to table below)!

The table shows how the data are always stored in the 49 individual fields of
a data set within the tool database.
This information is independent of the configuration of the tool database and
cannot be influenced by the projector of a tool management system!

Field number Designation Data type Remark

1 Sector Integer No access

2 Place Integer No access

3 query_int1 Integer

4 query_int2 Integer

5 query_int3 Integer

6 query_int4 Integer

7 query_bitfield Integer

8 query_string String max. 31 characters

9 ... 48 data_int Integer

49 data_string String max. 31 characters

CAUTION
Misinterpretation of field data possible!
During the configuration of the tool database it is defined how the
data in the individual fields are to be identified by the control unit
with respect to
– type (string, integer, real, digits before, digits after decimal point,
 etc.) and
– purpose (tool name, tool identification, radius, length, etc.).
Make sure that field data are correctly interpreted and, if applicable,
converted in accordance with the current configuration of the data-
base. Please refer to the following example!

System Functions4–26

1070 073 740-111 (02.11) GB

Example:
Tool length; value in database: 312000 (integer).
The value is interpreted by the control unit in accordance with the current
configuration, e.g. as a real number with 4 digits before and 3 digits after the
decimal point: 312.000.
If you process the value by CPL or write it into the database you must ensure
that the CPL program
D interprets the transferred value correctly and
D writes it into the database as an appropriate integer!

Examples:
.

.
!TDA(1,1,9,1)=20000 In tool table 1 the value 20000 is entered in sector 1 /

place 1 in the 9th database field (integer).
70

.
!TDA(2,3,8,1)=NAME$ In tool table 1 the content of the string variable NAME$

is entered in sector 2 / place 3 in the 8th database field
(string).

70

.
!A%=TDA(2,1,3) The value of the 3rd database field from the data set of

sector 2 / place 1 is entered in integer variable A. Tool
table 1 is used for this.

70

4.6 Contour shift

COF
Supplies the last programmed contour shift (G60) of a coordinate for the
channel in which the program with the COF command is running.
Since the programmed contour shift only affects coordinates on the current
channel, an error message is issued if a coordinate not existing on this chan-
nel is selected.
Compensation values are supplied in the active measuring unit of the cur-
rent channel, i.e. with G70 in inches and with G71 in mm. When working with
rotary axes or rotatory working range coordinates, the unit is always in de-
grees.

The instruction has the following structure:

COF(<axis selection>[,<selection type>])

<axis selection> See page 4–8, functions for coordinates or physical
axes.

<selection type> See page 4–8, functions for coordinates or physical
axes.

System Functions 4–27

1070 073 740-111 (02.11) GB

Examples:
.

.
!A=COF(3) Supplies the last programmed G60 shift of the coordi-

nate with the 3rd coordinate index on the active channel.
10

.
!C=COF(0) Runtime error, since 0 is not a valid coordinate index.100

.
!B=COF(”X”) Supplies the last programmed G60 shift of the X axis/

coordinate on the active channel.
20

C=COF(2,0) Supplies the last programmed G60 shift of the 2nd phy-
sical axis on the active channel.

30
.

!

4.7 Compensation of workpiece position

DPC
Supplies the parameters last programmed of the compensation of work-
piece position G138 of a coordinate (shift value and angle of rotation) for the
channel in which the program with the DPC command is running.

Since the compensation of workpiece position only affects coordinates on
the current channel, an error message is issued if a coordinate not existing
on the current channel is selected.
Compensation values are supplied in the active measuring unit of the cur-
rent channel, i.e. with G70 in inches and with G71 in mm. When working with
rotary axes or rotatory working range coordinates, the unit is always in de-
grees.

The instruction has the following structure:

DPC(<axis selection>[,<selection type>])

<axis selection> See page 4–8, functions for coordinates or physical
axes.

“1”...”n” or “name”: supplies shift value
“0”: supplies angle of rotation

<selection type> See page 4–8, functions for coordinates or physical
axes.

Examples:
.

.
!A=DPC(1) Supplies the last programmed G138 shift of the coordi-

nate with the 1st coordinate index on the channel.
10

.
!C=DPC(9) Runtime error since 9 is not a valid coordinate index, if

there are only 8 axes in the system.
100

.
B=DPC(2,0) Supplies the last programmed G138 shift of the axis with

the 2nd physical axis index on the channel.
25

.
!ANGLE=DPC(0) Supplies the last programmed G138 angle of rotation.30

.
!B=DPC(”X”) Supplies the last programmed G138 shift of the X axis/

coordinate on the channel.
15

.
!B=DPC(2) Supplies the last programmed G138 shift of the coordi-

nate with the 2nd coordinate index on the channel.
20

!

System Functions4–28

1070 073 740-111 (02.11) GB

4.8 Scaling

SCL
Supplies the parameters last programmed of the functions G37 and G38
(pole coordinates, scaling factors and angle of rotations) for the current
channel (here: channel in which the program with the SCL command is run-
ning).
Since G37, G38 only affect coordinates on the current channel, an error
message is issued if a coordinate not existing on the current channel is se-
lected.
Compensation values are supplied in the active measuring unit of the cur-
rent channel, i.e. with G70 in inches and with G71 in mm. When working with
rotary axes or with rotatory working range coordinates, the unit is always in
degrees.

The instruction has the following structure:

SCL(<selection>[,<axis selection>[,<selection type>]])

<selection>: 0: Last progr. angle of rotation of the main plane
1: Last programmed pole of a channel axis
2: Last progr. scaling factor of a channel axis

<axis selection> See page 4–8, functions for coordinates or physical
axes.

<selection type> See page 4–8, functions for coordinates or physical
axes.

Examples:

.
!W=SCL(0) Writes the last programmed G38 angle into variable W.10

. !P=SCL(1,2) Writes the pole of the coordinate with the 2nd coordinate
index on the channel into variable P.

20

.

!F=SCL(2,2,1) Writes the scaling factor of the coordinate with the 2nd
coordinate index on the channel into variable F.

30

.
!D=SCL(2,”X”) Writes the scaling factor of the X coordinate on the

active channel into variable D.
40

System Functions 4–29

1070 073 740-111 (02.11) GB

4.9 Active system data

MCA

. Notice that different MACODA numbers have been changed in the new
version (V5.1.x and on).
Please check existing part programs according to the list of changes
in the annex A.4 to determine which MACODA numbers need to be
changed.

Transfers the contents of a MACODA individual parameter. Depending on
the type of data, this value can be of the ”integer”, ”float”, ”double” or even
”string” type. The variable in which the transferred value is to be stored must
be of the same type!
Type conflicts between the value transferred and the destination variable
are detected during the program’s runtime and acknowledged in the form of
an error message.

MCA(<block>,<index>[,<channel>])

<block> Number of a MACODA parameter. Within one MACODA pa-
rameter, more than one MACODA individual parameter (para-
meter list) can be contained.
If a nonexistent parameter number is programmed, a runtime
error will appear.

<index> Index of the MACODA individual parameter, beginning with ”0”.
If a nonexistent index number is programmed, a runtime error
will appear.

<channel> Channel number. If not programmed, the function will supply
the MACODA individual parameter of the channel in which the
CPL program is presently being executed.
If a nonexistent channel number is programmed, a runtime
error will appear.
”–1” supplies the values of the basic setting for channel depen-
dent-parameters.

Example: MCA instruction with an older software version

10
20

BLOCKNR%=100100004
ERG%=MCA(BLOCKNR%,0) ! The contents of the first individual parameter of

MACODA parameter 100100004 of the active chan-
nel (= type of axis movement) is assigned to the
ERG% integer variable.

Old MACODA No.

Example: MCA instruction with a new software version (V5.1.x and on)

10
20

BLOCKNR%=100300004
ERG%=MCA(BLOCKNR%,0) !The contents of the first individual parameter of

MACODA parameter 100300004 of the active chan-
nel (= type of axis movement) is assigned to the
ERG% integer variable.

New MACODA No.

System Functions4–30

1070 073 740-111 (02.11) GB

NCF
Supplies the syntax of the NC function last programmed within the modal
group of <NC function>.
The variable in which the result is to be stored has to be of the ”dimensioned
character field” type.
Type conflicts between the value transferred and the destination variable
are detected during the program’s runtime and acknowledged in the form of
an error message.

The NCF function supplies values for all modal groups of the control unit and
therefore supersedes the function SD(1).

NCF(<NC function>)

<NC function> Syntax of any NC function.
If a nonexistent syntax is programmed, a runtime error
will appear.

Example:

20 ! The A$ string variable is assigned the syntax of
the last programmed NC function of the group
containing ”G1” as syntax.

! The previously requested NC function is pro-
grammed again.

.

.

10 ! Dimensioning a character field for a string with a
length of max. 4 characters..

.

DIM A$(4)

A$=NCF(”G1”)

N80 [A$]

SCS
Enables read-access to SERCOS drive parameters of the active parameter
set.

The instruction has the following structure:

SCS(<axis selection>,<ID type>,<ID no.>
 [,<Result var>])

<axis selection>:physical axis index or
physical axis name

<ID type>: String expression.
”S”: S parameter
”P”: P parameter

<ID no.>: Number of the SERCOS parameter

<Result var>: if <Result var> is entered, then no runtime error will
be generated when an access error occurs:
the following return value is possible:
0: access ok
1: access presently not possible

If <Result var> is not entered, then a runtime error
will be generated when an access error occurs.

<Result var> is an integer variable.

The content of the parameter is supplied without unit and weighting.

. Parameters containing a list (several values separated by commas)
cannot be read. The control unit generates an error message in such
cases.

System Functions 4–31

1070 073 740-111 (02.11) GB

If the drive data can be found in the SERCOS drive telegram, they will be
read from here (see Servodyn–D Parameter Manual). Otherwise the drive
data are read directly in the drive.
If other applications access to drive data, the access to the drive data is not
possible at this time. In this case of error, the parameter <Result var> leads
to a response in the part program. Renewed access can supply the desired
drive date.

. Continuous access to the drive data can prevent access for other ap-
plications!

Access to
drive data

POSITION% ERROR% Error message

yes New actual position
value of the ”ith” axis

0 none

no Old actual position value
of the ”ith” axis remains

1 SERCOS SERVICE
CHANNEL IS LOCKED

By evaluating the integer variables ERROR% the part program can respond
to the error.

Example:
10 POSITION% = SCS(1,”S”,51,ERROR%) The integer variable POSITION% is

assigned to the actual position value of
the 1st axis.

12 IF ERROR% = 0 THEN Error evaluation
13 REM *** actual position value could be read correctly ***
14 ELSE
15 REM *** actual position value could not be read ***
16 ENDIF

SCSL
Several of the SERCOS parameter are stored as lists in the drive. These can
be read with the command SCSL. Since the length of a list is unknown (and
the necessary storage space), the list elements read are stored in ASCII
files. Afterwards the data read can be processed with the help of CPL file
commands.

The SCSL command causes the given file to be newly set up, if no file al-
ready exists. The contents of an already existing file are re-written.

The instruction has the following structure:

SCSL(<axis index>,<ID type>,<ID no.>,<file name>[,<Re-
sult var>])

<axis index>: physical axis index or
physical axis name

<ID type>: String expression.
”S”: S parameter
”P”: P parameter

<ID no.>: Number of the SERCOS parameter.
<file name>: name of the ASCII file in which the list read is to be

stored.

System Functions4–32

1070 073 740-111 (02.11) GB

<Result var>: Integer variable
If <Result var> is put in, no runtime error will be gener-
ated when an access error occurs.
The following return value is possible:
0: access ok
1: access to SERCOS is presently not possible
2: access to file is erroneous.
If no <Result var> is put in, then a runtime error will
be generated when an access error occurs.

Access to drive data is not possible at certain times, i.e. when other applica-
tions are accessing drive data. The parameter <Result var> reacts to
this error in the part program. Renewed access can supply the desired drive
date.

. Continuous access to drive data can prevent access for other applica-
tions.

SD
Reads system data of the control unit.

The instruction uses the following syntax:

SD(<group>[,<index1>[,<index2>[,<index3>]]])

The SD instruction returns INTEGER values.

. The function SD(1) consists only of compatibility reasons for the
Bosch CC series.
SD(1) will not be supplemented by new functions!
The group index of SD(1) corresponds to that of the CC series and is
not compatible for the group classification of the Typ3 osa/PNC
(described in DIN programming manual)!
For writing new part programs use the NCF function instead of SD(1)!

System Functions 4–33

1070 073 740-111 (02.11) GB

1

2

3

4

5

2...48

1

2
3

6* 1...6

8

9

10

11 1
2

12

1

22...48
1 2

1
1

1
23

1
24

5
5

11

1
2
3

2*
2

1

25 1
35

1
1

2

11 1
211

1
1
2
2

1

212

1

3

7*

7*
27*

31...481*

42

45 1

45 2

35 3
45 3

12 3

412

*: Currently not available

Group Index1 Index2 Concerns the function Explanation

G75

Index3

G375 SD(9)=0
SD(9)=1

Measuring fixed stop executed
Measuring fixed stop not yet
executed

(G375 active)
(G375 not active)

Index 1: 1= Number of last programmed drilling axis
2= Number of active drilling axis

1,21,2

Index 2: 1= Axis, on which length compensation “H” has an effect
2= Axis, on which the L3 compensation of the general
 tool compensation has an effect

Last programmed G function
Last programmed G function with index1=1 can only be
recognized directly in the next block. Otherwise the value 0 will
be returned. For non�applied G groups, the SD function returns
the value −1.
G functions at Power ON

Supplies the channel number of the invoking channel.

Currently not in use

Currently not in use

Active G functions for respective group (see separate table)

Active override position in percent for the respective potentiometer.
Feedrate
Rapid traverse
Spindle (SD(2,3)=0, if no spindle is applied)
2nd spindle (SD(2,4)=0, if no 2nd spindle is applied)

Active speeds, rounded up to integer value
Feedrate in input unit per minute; evaluated with potentiometer.
When G63 is active, SD returns 100% value
Rapid traverse in mm/min or inch/min (100% value)
Spindle speed in rpm; evaluated with potentiometer.
(SD(5,3,1)=0, if no spindle applied)
Spindle speed in rpm; evaluated with potentiometer (2nd spindle).
(SD(5,4,1)=0, if no 2nd spindle is applied)

Last programmed speeds
Feedrate in input unit per minute
Spindle speed in rpm
(SD(5,3,2)=0, if no spindle applied)
Spindle speed in rpm (2nd spindle)
(SD(5,4,2)=0, if no 2nd spindle is applied)

Actual speed
Actual speed 2nd spindle

Currently not in use

Currently not in use

Probe switched: SD(9)=0 (G75 not active)
Probe not switched: SD(9)=1 (G75 active)

Main axis of last programmed plane switchover
Secondary axis of last programmed plane switchover
Main axis of active plane
Secondary axis of active plane

Active sense of spindle rotation
SD(12,1)= 3 clockwise spindle rotation
SD(12,1)= 4 counter-clockwise spindle rotation
SD(12,1)= 0 spindle stop
SD(12,1)= –1 spindle not applied
SD(12,1)= 19 spindle orientation

Last programmed sense of spindle rotation
(functions as with ”Active sense of spindle rotation”)
An active reversal of the sense of rotation via interface signal
is not taken into account!
Active sense of spindle rotation (2nd spindle)
(functions as with ”Active sense of spindle rotation”)

Last programmed sense of spindle rotation (2nd spindle)
(functions as with ”Active sense of spindle rotation”)

System Functions4–34

1070 073 740-111 (02.11) GB

15

16* 0..1

17* 1...32 Currently not in use

20 1, 2 Supplies the number of synchronous axes of the invoking channel:

21 1..n **

SD(21, <1..n> ,1) = value (default value) at the moment
of block processing

SD(21, <1..n> ,2) = value when active.

1...n = channel number, n = max. number of channels

22

SD(22, <1..m>|String ,1) = value (default value) at the moment
of block processing

SD(22, <m>|String ,2) = value when active.

1..m = physical axis number,
m = max. number of physical axes
String = physical axis name

23

13

14

* : Currently not available

Test without motion SD(15)=0 : no
SD(15)=1; yes

Number of active national language
(MACODA parameter 6010 00010)

Group Index1 Index2 Concerns the function ExplanationIndex3

1, 2

1...m
or
physi-
cal
axis
des-
igna-
tion

1, 2

SD(24, <1..m>|String ,<1..n>,1) = value (default value) at the
moment of block processing

SD(24, <1..m>|String ,<1..n>,2) = value when active

1...n = channel number, n = max. number of channels
1..m = logical axis number,
m = max. number of logical axes
String = logical axis name

1..m
or
log-
ical
axis
de-
signa-
tion

1, 2

24 1..m
or
logical
axis
de-
signa-
tion

1..n ** 1, 2

SD(23, <1..m>|String ,1) = value (default value) at the moment
of block processing

SD(23, <1..m>|String ,2) = value when active.

1..m = logical axis number,
m = max. number of logical axes
String = logical axis name

25 1...m
or
physi-
cal axis
desig-
nation

SD(25, <1..m>|String) = value when active.

1..m = physical axis number,
m = max. number of physical axes
String = physical axis name

** : Number of a channel:
If the given channel is inactive it could be that axes on this channel have already been lent out, i.e. they are presently active on
another channel. Despite this fact, the axes which are lent out still belong to the given channel.

Example: Axis X2 belongs to channel 2 (inactive) and X2 is synchronously being run on channel 1.
The axis X2 is still regarded in both SD instructions ”number of synchronous axes of the channel” of SD(21,2,...) and SD(21,1...).

SD(20,1)= value (default value) at the moment of block processing
SD(20,2)= value when active

Supplies the number of synchronous axes of a channel:

Currently not in use

Supplies the logical axis number of a physical axis, if this is an
axis of the invoking channel:

Supplies the physical axis number of a logical axis of the in-
voking channel:

Supplies the physical axis number of a logical axis:

Supplies the channel of a physical axis:

Machining mode when executing at the point of interpretation
SD(13)= 0 single block, single step
SD(13)= 1 automatic
SD(13)= 2 program block
SD(13)=10 block search with single block or single step,

selected block not yet interpreted.
SD(13)=11 block search with automatic,

selected block not yet interpreted.

System Functions 4–35

1070 073 740-111 (02.11) GB

68 1

1...82

1 1...8

68

168

1...82168

1...8 Sum of last programmed coordinate shifts (G168 + G268) for
the given axis (Index1).

Total of the active coordinate shifts (G168 + G268) for the given
axis (Index2).

Value of last programmed coordinate shift G168 for the given
axis (Index1).

Value of the active coordinate shift G168 for the given axis
(Index2).

Value of the last programmed additive coordinate shift G268 for
the given axis (Index1).

Active value of the additive coordinate shift G268 for the given
axis (Index2).

1...81268

1...82268

200 1

1...101

3 1...10

200

200

1...1011200

Number of active areas on the channel

Shows if an area is active or not.
0: Area i (Index2) is not active

Type of area ”i” : 0: type not defined
1: dead range
2: work area

Position of the center of the area ”i” (Index2) in programming
units (for the 1st axis of the area)

Position of the center of the area ”i” (Index2) in programming
units (for the 2nd axis of the area)

Extension of the area ”i” (Index2) in programming units
(for the 1st axis of the area)

1...1012200

1...1021200

Extension of the area ”i” (Index2) in programming units
(for the 2nd axis of the area)

1...1022200

Group Index1 Index2 Concerns the function

G168, G268

Work area,
Dead range

logical axis number of the axis of rotation1131

symmetry2131

G131

Index3

Spindles

Current potentiometer value1..8202

Active commanded speed
(incl. potentiometer)1..81205

Last progr. commanded speed1..82205

Actual speed1...83205

Active movement function1..81212

Last programmed movement
function1..82212

1..8 = spindle number previous, still valid
SD functions:

SD(2,3), SD(2,4)

SD(5,3,1), SD(5,4,1)

SD(5,3,2), SD(5,4,2)

SD(5,3,3), SD(5,4,3)

SD(12,1), SD(12,3)

SD(12,2), SD(12,4)

Last programmed precision barrier of G328328

Last programmed precision barrier of G3281328

G328

Last programmed distance between corners of G3282328

Explanation

System Functions4–36

1070 073 740-111 (02.11) GB

Group Index1 Index2 Concerns the function

Axis coupling

581 0

01...8 (s)

1

581

581

2581

1...8 (m) logical axis number m: if axis m is a master axis
0: if there is no master axis

Number of the master axis to which axis s is a slave
0: if s is not a slave

Programmed slave axis shift in programming units
0: if s is not a slave

Programmed coupling factor
0: if s is not a slave

Programmed master axis shift in programming units
0: if s is not a slave

3581

m: logical axis number of the master on the current channel
s: logical axis number of the slave on the current channel

1...8 (s)

1...8 (s)

1...8 (s)

Index3 Explanation

Examples:
.
10
.

!A% = SD(1,2,1)

.
20 B% = SD(1,4,1) !.
30 A% = SD(2,1) !
.

40 B% = SD(5,1,1) !
.

A% contains the active G function from
index range 2, i.e., the value 1 if G1 is active.

B% contains the active G function from index range 4.
A% contains the active position of the
feed potentiometer in percent.
Variable B% contains
the active feedrate speed.

Supplementary table for querying active G functions of group 1:

Index Index

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0−3, 5, 11−13, 73
70, 71

63, 66
543
93−95
40−42

17−20
8, 9

14, 15

80−86
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32

−

53−59
153−159
253−259
60, 67
37−39
61, 62
−

64, 65

145..845, 146

160, 167

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−

90, 91, 189, 190, 191

6, 7

78, 79

68, 69
Currently not in use

114, 115

Currently not in use
Currently not in use

G functions G functions

Currently not in use

Currently not in use

Currently not in use

Programming example: SD instruction (probe query)
.
N4 G75 X120

60
N7
80
90
100
110

IF SD(9) = 1 THEN
(MSG,PROBE WAS NOT DEFLECTED)
GOTO .ERROR
ELSE
XMEAS = PPOS(1)

ENDIF
.

System Functions 4–37

1070 073 740-111 (02.11) GB

In the SD (probe query) example, the x axis is traversed in the direction of the
specified position. If the position is reached and the probe is not deflected, a
message is returned (line N7), and a jump to the .ERROR label is executed. If
the probe is deflected, the current position with reference to the program
coordinate system can be stored in XMEAS.

SDR
This instruction reads system data of the NC control unit in REAL format.
Command syntax and application are similar to the SD instruction.

The syntax is as follows:

SDR(<group>[,<index1>[,<index2>]])

1

2

4*

5*

1...8

12*

1
2
3

2*
2

42

*: Currently not available

Currently not in use

Currently not in use

Group Index1 Index2 Concerns the function Explanation

Axis positions of all machining axes that were calculated in block
search/reentry (index1 = axis number).
If there is no block search, 0 will be returned.
Addressing a non-applied axis or auxiliary axis will result in a
runtime error.

68 1

1...82

1 1...8

68

168

1...82168

1...8 Total of last programmed coordinate shifts (G168 + G268) for
the given axis (Index2).

Total of the active coordinate shifts (G168 + G268) for the given
axis (Index2).

Value of last programmed coordinate shift G168 for the given
axis (Index2).

Value of the active coordinate shift G168 for the given axis
(Index2).

Value of the last programmed additive coordinate shift G268 for
the given axis (Index2).

Active value of the additive coordinate shift G268 for the given
axis (Index2).

1...81268

1...82268

Tangential
tool guidance

202 1...8 Spindles current potentiometer value
(older SDR functions which are still valid: SDR(2,3), SDR(2,4))

Supplies the offset angle in degrees (Index2)
Supplies the adaptation angle in degrees (Index2)

3131
4131

Last programmed precision barrier of G328328

Last programmed precision barrier of G3281328
G328

Last programmed distance from corners of G3282328

G68
G168
G268

Active override position in percent for the respective potentiometer.
Feedrate
Rapid traverse
Spindle (SDR(2,3)=0, if no spindle applied)
2nd spindle (SDR(2,4)=0, if no 2nd spindle is applied)

Currently not in use

System Functions4–38

1070 073 740-111 (02.11) GB

*: Currently not available

Group Index1 Index2 Concerns the function Explanation

Axis coupling

581 0

01...8 (s)

1

581

581

2581

1...8 (m) logical axis number m: If the axis m is a master axis
0: if there is no master axis

Number of the master axis to which axis s is a slave
0: if s is not a slave axis

Programmed slave axis shift in programming units.
0: if s is not a slave axis

Programmed coupling factor
0: if s is not a slave axis

Programmed master axis shift in programming units
0: if s is not a slave axis

3581

m: logical axis number of the master on the current channel
s: logical axis number of the slave on the current channel

1...8 (s)

1...8 (s)

1...8 (s)

System Functions 4–39

1070 073 740-111 (02.11) GB

4.10 Variable axis address

AXP
This function permits the plane-independent programming of part and mea-
suring programs.

AXP(<axis number>,<positional data>[,<axis type>])

To use this function, the instruction must be included in an NC block, en-
closed in square brackets ”[].” It will be programmed in lieu of the address
values.

<axis number> logical or physical axis index

<positional data> Variable or value of positional data

<axis type> Determines whether <axis number> is inter-
preted as a physical or as a logical axis index:
”0”: <axis number> is the physical axis index.
”1”: <axis number> is the logical axis index of

 that channel in which the program is
currently being executed.

If <axis type> is not programmed, it will be occu-
pied with 1 (default value).

Example:

N40

.

G20 AXP(A%,E) AXP(B%,E)

F1000]

[][]

N50 G2 AXP(A%,C) AXP(B%,D) R RA][[][]

10

20

A%=P1% : B%=P2%

C=P3:D=P4:RA=P5

Transferring axis no’s from
P1% and P2% to A% and B%.

Sub-program:

Transferring command values
for G2.30 E=0

Constant for pole at G20.

Plane switchover with G20;
pole at 0,0.

Radius programming with G2.

Planes are defined by A% and B%. Subsequent plane switchover via G20.
The axes conclude by traversing at F1000 in an arc that is defined by the
variables C and D (end point), and RA (radius).

System Functions4–40

1070 073 740-111 (02.11) GB

4.11 PLC interface

IC
The digital interface between CNC and PLC can be accessed by means of
this function. It can be used to query all inputs and outputs of the control unit.

IC(<bit>[,<group>][,<index>])

<bit> The number of the interface signal within the chosen group.
Please refer to the PLC Project Planning Manual for the mean-
ing of individual signals.

<group> (see table)

<index> (see table)

<bit> <group>
Default = 0

<index>

0 ... 111 0 = channel-related input signals 0 ...max. channel
Default = active channel

0 ... 111 1 = axis-related input signals 1 ... max. axis
Default = 1

0 ... 111 2 = spindle-related input signals 1 ... max. spindle
Default = 1

0 ... 95 3 = channel-related output signals 0 ...max. channel
Default = active channel

0 ... 63 4 = axis-related output signals 1 ... max. axis
Default = 1

0 ... 63 5 = spindle-related output signals 1 ... max. spindle
Default = 1

0 ... 31 6 = input signals in the global interface 1

0 ... 31 7 = output signals in the global interface 1

0 ... 7 8 = input signals in the HighSpeed inter-
face

1

0 ...5
with
PNC:
0...7

9 = output signals in the HighSpeed inter-
face

1

Example: IC instruction (read-access)
.
30

40
.

REM Load into variable A? the value of the 6th input signal

A? = IC(5,1,2)

35 REM of the 2nd axis (direction of handwheel rotation).

Write-access is possible only to the channel-related output signals 81
through 96. In this case the value ”0” (and not ”3” !) must be specified for
<group> parameter.

Example: IC instruction (write-access)

.
30
40
.

REM Setting the 81st output signal of channel 1.
IC(80,0,1) = TRUE

System Functions 4–41

1070 073 740-111 (02.11) GB

PLC
This function permits access to the data of the PLC.

PLC(<type>,<DM number>,<address>,<size>)

<type> Data type (refer to table below)
<DM number> Data module number (entry is relevant only with

<Type> = 4 (data word)). For other types no entry, how-
ever, the ”,” comma must always be written!).

<address> Relative byte address from beginning of range.
<size> Size of data type

1: byte
2: word
4: double word

Possible parameter combinations:
<type> Meaning <DM number>

1 Input (I) –
2 Output (O) –
3 Marker (M) –
4 Data word (D) number of the data module
5 Data buffer (DB) –
6 Data field (DF) –
7 Timer (T) –
8 Counter (C) –
9 Special marker (SM) –
10 System range (S) –
11 Extended input (EI) –
12 Extended output (EO) –

The parameter <address> is checked according to the active PLC.

The parameter <size> has no meaning when reading timers (<type> = 7)
and counters (<type> = 8):
D The result (the remaining time until the timer finishes) is supplied in milli-

seconds when reading timers (<type> = 7).
D The current value of the counter is returned when reading counters.

Read-access is permitted for all types!
MACODA parameter 2060 00100 indicates the number of the first data
module for which write-access is permitted.
MACODA parameter 2060 00110 indicates the number of all data mod-
ules for which write-access is permitted.

Examples:
.
30
40
.

.

REM Read byte 10 from input image
I% = PLC(1,,10,1)

80
90

REM Read one word from byte 2 in data module 98.
J% = PLC(4,98,2,2)

System Functions4–42

1070 073 740-111 (02.11) GB

4.12 Time recording

CLOCK
Reads out the internal system time of the control unit in milliseconds.

Example:

30

N4

50
.

G1X50Y70

START TIME% = CLOCK

.

20 WAIT

40 WAIT

ENDTIME% = CLOCK: DIFF% = ENDTIME%–START TIME%

Before and after the execution of block N4, the current time counter status is
transferred to the START TIME% and/or END TIME% variables. The differ-
ence in contents of both variables forms the basis for determining the block
processing time of N4 in milliseconds.
It is instructive to note that the WAIT instruction is an absolute requirement in
time recording!

DATE
Supplies the current value for date.

Example:
.

30 A$ = DATE
.

The date is assigned to the A$ STRING variable in DD.MM form.

TIME
Supplies the current value for time.

Example:
.
40 B$ = TIME
.

The time is assigned to the B$ STRING variable in HH.MM.SS form.

System Functions 4–43

1070 073 740-111 (02.11) GB

4.13 Errors and Error Categories

GETERR
This function calls in the current errors in a CPL program. It includes the ele-
ments current error no., channel no. of the error and the error category it be-
longs to.

Each occurring error is stored in an array with its elements. The maximum
number of errors that the array can record is limited by the dimensioning
(DIM) of the parameter <error no.>.

The GETERR function supplies the following return values:
D –1: Function could not be executed.
D q 0: Number of present errors on <channel>.

GETERR(<channel>,[<category>],<error no.>[,<number>])

<channel>: Channel no. of the queried channel
 –1 : All channels
> 0: Channel no.

<category> 0: All warnings and errors (default)
1: Minor system errors
2: Control or drive errors
3: Interpolator errors
4: Hardware errors
5: PLC errors
6: Part program errors
7: Runtime warnings
8: MSD messages: errors
9: MSD messages: warnings
10:MSD messages: messages

<error no.> Result variable:
Two-dimensional integer array with at least 3 elements in
the second dimension (DIM <error no.>% (x.3)), default
value: 0.
The function supplies the present error numbers from
<channel> in chronological order.
Meaning of the 3 elements of the 2nd dimension:
<error no.>(x,1): error no.
<error no.>(x,2): error channel (–1 = applies to all

channels)
<error no.>(x,3): error category (if declared by means of

DIM command).
See parameter <category> for values
(0 = unknown category).

Example: DIM ERRNO% (100,3).

. Only the variable name is to be entered without the
dimension or index!

System Functions4–44

1070 073 740-111 (02.11) GB

<number> Integer variable (Default value: 1)
Defines the number or the error to be read.
1: Default value
> 0: Parameter values are not tested for validity,

i.e. if the number of data to be read is larger than the
array dimension, no part program error is generated.

Example:
<number> =120, but DIM ERRNO% (100,3).
In this case, 20 errors will not be read.

Example: Display of errors in the information dialog.

 Info

Errors Warnings Messages

No Ch Date Time (ms) Description

1856 2 29.07.02 12:58:01 (490) Drive error for coupled axis X1.
1869 2 29.07.02 12:55:01 (490) Permanent CPL variable A not installed. Memory full.
1938 2 29.07.02 12:45:56 (490) Invalid axis index programmed!
1970 2 29.07.02 12:30:12 (210) Axis 3 is used by another channel.
1971 2 30.07.02 12:11:00 (340) Synchronous axes of channel 2 are not enabled.
1970 2 29.07.02 12:01:01 (210) Axis 2 is used by another channel.

?

Error Warning Message Update Set
Filter

9M119 k” –> MDI
Selected info

Number: 387
Class: Part program error
Channel: $1
Date: 30.07.01
Time: 12:11:00

Syntax error with “9M119 k” –> MDI

Column headers:
No: Error number
Ch: Channel on which the event has occurred
Date: Date on which the event occurred
Time: Time at which the event occurred
(ms): Milliseconds. In addition to time
Description: Information on the event

Delete
Info

Display
Last
Info

?

Display
details

$1: Station 0012
NC: Typ3osa

30.07.02
12:15:22

Example:
Query last part program error on channel 2

10 DIM ERRNO%(5,3) :REM Integer array with 5 elements
20 REM REM query last part program error on channel 2
30 CHAN%=2:CATEGORY%=6
40 ERG%=GETERR(CHAN%,CATEGORY%,ERRNO%,1)

The error no. 1938 appears in ERRNO% (1,1) (see figure above).

System Functions 4–45

1070 073 740-111 (02.11) GB

Example:
Result evaluation for 5 array elements (see display page 4–44)

10 DIM ERRNO%(5,3):REM Integer array with 5 elements
20 CHAN%=2 : CATEGORY%=0
25 REM query part program error on channel 2
30 ERG%= GETERR(CHAN%, CATEGORY%, ERRNO%, 5)
40 FOR I%= 1 TO ERG%
50 IF ERRNO%(I%,3)=6 THEN
60 PRN#(0, ”Part program error: ”,ERRNO%(I%,1))
70 ENDIF
80 NEXT I%

Error no.
Error channel

Error category

1
2

3

1856
2

2

DIM ERRNO%(5,3)

1
2

3

1869
2

1

1
2

3

1938
2

6

1
2

3

1970
2

10

1
2

3

1971
2

6

1
2

3

1970
2

6

Result in Erg% that fulfils
the criteria of GETERR(..):
= 2, i.e. 2 errors were
 detected

Criteria for error selection:
– Channel 2
– Category 6
– Max. number of errors to be recorded: 5

Most recent
errors reported

This error is no longer
taken into consideration,
since the array can record
only 5 elements according
to the DIM command.

Array index: 1

Array index: 2

Array index: 3

Array index: 4

Array index: 5

ERRNO%(3,1)= 1938

ERRNO%(5,1)= 1971

Array element

Oldest errors reported

The part program errors 1938 and 1971 are issued as a result in the MSG
window. The variable Erg% has the value 2.

. One of the uses of the GETERR function is to record the chronological
appearance of one or several errors in order to research the actual
cause of the error.

System Functions4–46

1070 073 740-111 (02.11) GB

4.14 NCS coupling

Process and data services of the internal NCS interface can be accessed by
means of the functions for NCS coupling.

4.14.1 Possible error return values of the functions

All function calls supply a return value for verification and remedying errors.
This value can be assigned to an integer variable or to a real variable.

Example:
ERR_VAR% = MCOPS(...)
ERR_VAR% = MCODS(...)

CAUTION
Incorrect program reactions possible!
If invoked functions return an error code, actions which might be im-
portant for the continued program sequence were performed incom-
pletely or not at all.
We therefore urgently recommend that after a function call you
check the program (e.g. using CASE) to determine whether the func-
tion was able to be executed without error.
The further program behaviour will then be based on the type and
severity of any error occurring.

The following return values are currently defined:

0: No error occurred.
1: The specified channel does not exist.
2: The function cannot be executed because the specified channel is

momentarily occupied (the momentary status does not permit the ac-
tion).

3: In the specified channel an initiated control reset is not yet completed.
4: The specified program name is too long (currently not in use).
5: The function requires reference points traversed to.
6: The specified program does not exist or cannot be executed.
7: When entering buffered NC blocks, writing into the buffer was inter-

rupted. A second authority had simultaneously attempted to write in
the buffer.

8: The function cannot be executed in the current operation mode.
9: The channel cannot be started because its status is not READY.
10: The function cannot be executed because no program is selected.
11: The specified program cannot be selected because the channel sta-

tus does not permit it (e.g. status of block processing and interpolator
is RUNNING).

12: Currently not in use.
13: The operation mode cannot be changed because the channel status

does not permit this.
14: The destination of ”Search block” was not found.

System Functions 4–47

1070 073 740-111 (02.11) GB

15: ”Search block” is not possible because, although the channel status is
READY, the processing of the main program has already started (e.g.
program at M0).

16: The number of axes in the input of external zero shifts is too large.
17: In the input of external zero shifts the number of axis ZS groups is too

large.
18: The specified syntax is unknown.
19: Improper index when entering an external tool compensation.
20: The number of corrections when entering an external tool compensa-

tion is too high (may be in connection with the correction index).
21: Improper format when entering an external tool compensation.
22: Improper tool orientation when entering an external tool compensa-

tion.
23: Improper compensation group.
24: The axis addressed does not exist.
25: When entering an NC block with automatic start, a runtime error was

detected, e.g. a syntax error.
26: When entering buffered NC blocks, the buffer overflowed.
27: The entry for the coordinate filter is incorrect.
100: The magic number of the message is incorrect.
101: The NCS communication is disrupted.
102: The specified function is not available in this software version.
103: An internal error has occurred (currently not in use).

. If the invoking program also contains NC blocks, the block process-
ing is generally ahead of the machining. If at the time of block process-
ing by MCOPS or MCODS function a process service or a machine
status is requested the conditions possibly necessary for this at the
machine are not yet met.
This problem, however, applies only to functions which access pre-
cisely that channel in which they themselves are executed.
In this case use the WAIT command in the line before the function call.
This halts the block processing until all the blocks before WAIT have
really been executed.

System Functions4–48

1070 073 740-111 (02.11) GB

4.14.2 Available functions

MCODS
Invokes motion control data services of the NCS by CPL. In this way data
and statuses can be read from the CNC.

. All returned values refer to that time at which the CPL block is pro-
cessed by the block processing.
If the invoking program also contains NC blocks the block processing
is generally ahead of the machining. If program sequences are to be
influenced by functions which determine current machine data or
states you must eliminate the ”time lag” between block processing
and the current machine state. This applies, however, only when you
use functions which access precisely that channel in which they
themselves are executed.
In this case use the WAIT command in the line before the function call.
This halts the block processing until all the blocks before WAIT have
really been executed.

The functions supply a return value (see section 4.14 from page 4–46).

General syntax:

MCODS(<type>,<channel>,<version>,<buffer>,<size>,<axis
number>,<ID number>[,<P1>])

<type>: Integer expression. States the function to be executed.
The subsequent table lists all the available functions.

<channel>: Integer expression. States the channel which the function is
to affect.

<version>: Initialized integer or real variable (not a constant!). If the
content of the variable is at function call = 0 the function de-
fined by <type> writes the requested data immediately in
<buffer>.
In addition, the function returns in <version> a version iden-
tification of the data supplied. If this version identification is
still contained in the variable the next time the function is in-
voked the function does not write the requested data imme-
diately into <buffer> but waits until after the next data
change.
In this way for instance a program loop can be run through
until a channel has reached a certain state. Here you
should, however, include a timeout condition (e.g. counter
or expired time period) in the loop in order to avoid endless
loops!

<buffer>: In <buffer> the function returns the requested data values.
Depending on the type of data <buffer> must be
– a simple variable of the integer, real or double type
– a field variable of the integer, real or double type
– a string variable (one-dimensional character field).

. In the case of field or string variables only the variable name may be
given without dimension or index!

System Functions 4–49

1070 073 740-111 (02.11) GB

<size>: Integer expression. Defines the field size of <buffer>.
If <buffer> is not a field variable but a simple variable of
the type integer, real or double, specify the value 1 for
<size>.

<axis number>: Integer expression. Provides the axis number of a physi-
cal axis.

<ID number>: Integer expression. Supplies the value of an <ID
number> out of the cyclic axis message for all axes.

. The size of a field variable used must first be defined by DIM command
and may not be exceeded in the parameter <size>!

<P1>: Optional parameter dependent on <type>.

Function overview MCODS(...)

Positions

Commanded position of axis see MCODS(1..)

Commanded position of axis see MCODS(2..)

Actual position of axis see MCODS(35..)

Actual values of axis (machine coordinate system) see MCODS(38..)

Lag see MCODS(4..)

Axis program value (program coordinate system) see MCODS(37..)

Programmed end positions incl. shifts see MCODS(16..)

Programmed end positions without shifts see MCODS(23..)

Speed and spindle speed

Path feed see MCODS(3..)

Programmed path feed see MCODS(24..)

Jog speeds see MCODS(27..)

Commanded spindle speed, cutting velocity see MCODS(5..)

Actual spindle speed see MCODS(36..)

Maximum spindle speed see MCODS(19..)

Minimum spindle speed see MCODS(20..)

Programmed spindle speeds see MCODS(25..)

States

Status ”InPos” see MCODS(6..)

Status “Test mode” see MCODS(29..)

Status ”Traverse to reference point” see MCODS(26..)

Status ”Dwell active” see MCODS(39..)

Status ”Acknowledgement-compulsory auxiliary
function active”

see MCODS(40..)

Status ”Load release” see MCODS(41..)

Status ”Travel command” see MCODS(47..)

Status ”Feed inhibit” see MCODS(49..)

SAV (block preparation) and IPO states see MCODS(32..)

Potentiometers

Value of feed potentiometer see MCODS(7..)

Values of spindle potentiometers see MCODS(8..)

System Functions4–50

1070 073 740-111 (02.11) GB

Value of axis potentiometers see MCODS(50..)

Compensations

Active length compensation number see MCODS(9..)

Active length compensation see MCODS(10..)

Active tool radius compensation number see MCODS(11..)

Active tool radius compensation see MCODS(12..)

Name of active tool compensation table see MCODS(13..)

Name of active axis shift table see MCODS(14..)

Active zero axis shift values see MCODS(15..)

Active external tool compensation values see MCODS(51..)

Active external axis zero shift values see MCODS(52..)

Active general tool compensation see MCODS(54..)

Operation modes

Channel operation mode see MCODS(31..)

Axis operation mode see MCODS(48..)

System structure

Number of feed axes, auxiliary axes, spindles;
movement types, drive types

see MCODS(34..)

Number of channels see MCODS(44..)

Number of axes see MCODS(45..)

Names of axes see MCODS(33..)

Active logical axis names see MCODS(59..)

Logical axis names (default setting) see MCODS(60..)

Assignment of axis to channel see MCODS(43..)

Default assignment of axis to channel see MCODS(58..)

ID number from the cyclic axis message see MCODS(62..)

Units of measurement

Unit of measurement of axes (default setting) see MCODS(61..)

Unit of measurement of axes see MCODS(53..)

Type of programming (inch/metric) see MCODS(18..)

Spindles

Movement functions of spindles see MCODS(63..)

Gear range of spindles see MCODS(64..)

Group classification of spindles see MCODS(65..)

Automatic or manual gear selection see MCODS(66..)

Information as to whether gear switching is active see MCODS(67..)

Drive

Manufacturer’s version see MCODS(55..)

Control device type see MCODS(56..)

Motor type see MCODS(57..)

Miscellaneous

Messages in part program see MCODS(28..)

Path and name of the main program see MCODS(30..)

System Functions 4–51

1070 073 740-111 (02.11) GB

Return to path strategy and recording of the jog
movements

see MCODS(46..)

Customer-specific data see MCODS(42..)

Optional stop (activated) see MCODS(68..)

Skip block (activate) see MCODS(69..)

Automatic program re-selection active see MCODS(70..)

. In the following tables integer constants are given in some cases as
parameters in the syntax. In lieu of these constants you can also pro-
gram integer variables, but these must be occupied with the stated
value at the time of the function call.

Function supplies /
refresh1)

<buffer> is
of type 2)

Syntax /
description

Commanded position of axis Double,
Array

MCODS(1,–1,<version>,<buffer>,<size>)

Z Supplies in <buffer> in ascending, channel-independent order the
commanded positions of all feed and auxiliary axes in the system:

in the case of linear axes in mm
in the case of rotary axes in degrees

”Set actual value” (e.g. G92) is included in the calculation of the
values.

Commanded position of axis Integer,
Array

MCODS(2,–1,<version>,<buffer>,<size>)

Z Supplies in <buffer> in ascending, channel-independent order the
commanded positions of all feed and auxiliary axes in the system:

in the case of linear axes in 0.0001 mm
in the case of rotary axes in 0.0001 degrees

”Set actual value” (e.g. G92) is included in the calculation of the
values.

Path feed Real, Array MCODS(3,<channel>,<version>,<buffer>,3)

Z Supplies in <buffer> in ascending order 3 values with current path
feeds of <channel> (incl. feed potentiometer) in the unit mm/min:

1. The commanded speed which is specified to the interpolator
externally.

2. The actual interpolator speed (=momentary path velocity)
3. The interpolator-internal commanded speed. It may have

changed vis-à-vis the externally specified speed by an applica-
tion (e.g. feed-adapt function).
In case of feed programming in mm/rev (G95) it supplies the path
feed in mm/min.

1) Data which the control unit provides cyclically are identified with ”Z”.
Data available after each switching of blocks are identified with ”S”.
Data which appear in irregular periods after a change are identified with an ”E”.
Data which appear immediately when called for are identified with an ”I”.
Data which never change (they only need to be called for once) are identified with ”R”.

2) Gives the variable type (integer, real, double, character) needed for <buffer>.
If not a simple variable but a field variable is needed the variable type is followed by ”array”.

System Functions4–52

1070 073 740-111 (02.11) GB

Function supplies /
refresh1)

Syntax /
description

<buffer> is
of type 2)

Lag Real, Array MCODS(4,–1,<version>,<buffer>,<size>)

Z Supplies in <buffer> in ascending order the lag of all physical axes:
in the case of linear axes in mm
in the case of rotary axes in degrees

If the transfer of the lag is not supported by the drives (by SERCOS
ID no.) the value 0.0 is returned.

Commanded spindle speed,
cutting velocity

Real, Array MCODS(5,–1,<version>,<buffer>,<size>)

Z Supplies in <buffer> in ascending order (S or S1, S2, S3, etc.) the
commanded spindle speeds or cutting velocities of all spindles in
the system:
If G196 is active the cutting velocities are supplied in m/min,
otherwise the current commanded spindle speeds in rpm.

The potentiometer, the speed limits (G192, G292) and the limits by
the gear are included in the calculation.
If a spindle is not present 0.0 is returned at the relevant location in
<buffer>.

Status ”InPos” Integer,
Array

MCODS(6,–1,<version>,<buffer>,<size>)

Z Supplies in <buffer> in ascending, channel-independent order the
value 0 or 1 as InPos signal for every feed and auxiliary axis:

Axis is in position: 1
Axis is not in position: 0

An axis is in position if it is in the parameterized InPos window
(MACODA parameter 1015 00100) and no travel command (see
also MCODS(47...)) is present.

Value of the feed potentiometer Real MCODS(7,<channel>,<version>,<buffer>,1)

Z Supplies in <buffer> the current value of the feed potentiometer of
<channel> in 1/100 percent.

Values of the spindle
potentiometers

Real, Array MCODS(8,–1,<version>,<buffer>,<size>)

Z Supplies in <buffer> in ascending order for all spindles in the
system (S and S1, S2, S3, etc.) the current values of the feed
potentiometers in 1/100 percent.

Active length compensation
number

Integer MCODS(9,<channel>,<version>,<buffer>,1)

S Supplies in <buffer> the length compensation number active in
<channel>. If no length compensation is active –1 is returned.

Active length compensation Real MCODS(10,<channel>,<version>,<buffer>,1)

S Supplies in <buffer> the length compensation active in <channel> in
mm. If no length compensation is active 0.0 is returned.

1) Data which the control unit provides cyclically are identified with ”Z”.
Data available after each switching of blocks are identified with ”S”.
Data which appear in irregular periods after a change are identified with an ”E”.
Data which appear immediately when called for are identified with an ”I”.
Data which never change (they only need to be called for once) are identified with ”R”.

2) Gives the variable type (integer, real, double, character) needed for <buffer>.
If not a simple variable but a field variable is needed the variable type is followed by ”array”.

System Functions 4–53

1070 073 740-111 (02.11) GB

Function supplies /
refresh1)

Syntax /
description

<buffer> is
of type 2)

Active tool radius compensation
number

Integer MCODS(11,<channel>,<version>,<buffer>,1)

S Supplies in <buffer> the tool radius compensation number active in
<channel>. If no tool radius compensation is active –1 is returned.

Active tool radius compensation Real MCODS(12,<channel>,<version>,<buffer>,1)

S Supplies in <buffer> the tool radius compensation active in
<channel> in mm. If no tool radius compensation is active 0.0 is
returned.

Name of the active tool
compensation table

Character,
Array

MCODS(13,<channel>,<version>,<buffer>,<size>)

S Supplies in <buffer> the name of the tool compensation table active
in <channel>. If none is active 3 blanks are returned as the string.

Name of the active axis zero shift
table

Character,
Array

MCODS(14,<channel>,<version>,<buffer>,<size>)

S Supplies in <buffer> the name of the axis zero shift table active in
<channel>. If none is active 3 blanks are returned as the string.

Active axis zero shift values Real, Array MCODS(15,<channel>,<version>,<buffer>,<size>)

S Supplies in <buffer> the axis zero shift values of the 3 groups
G53...G59, G153...G159 and G253...G259 active in <channel> for
all feed axes in mm.
If no shift is active 0.0 is returned.
The following order applies:

D Shift of the 1st axis in group 1

D Shift of the 2nd axis in group 1

D Shift of the nth axis in group 1

D Shift of the 1st axis in group 2

:

D Shift of the nth axis in group 2

:

D Shift of the nth axis in group 3

Programmed end positions incl.
shifts

Real, Array MCODS(16,0,<version>,<buffer>,<size>)

S Supplies in <buffer> in ascending, channel-independent order the
end positions with reference to the workpiece coordinates of the
active blocks of all feed and auxiliary axes:

D in the case of linear axes in mm

D in the case of rotary axes in degrees

All the shift values are calculated.
”Set actual value” (e.g. G92) is not included in the calculation of the
values.

1) Data which the control unit provides cyclically are identified with ”Z”.
Data available after each switching of blocks are identified with ”S”.
Data which appear in irregular periods after a change are identified with an ”E”.
Data which appear immediately when called for are identified with an ”I”.
Data which never change (they only need to be called for once) are identified with ”R”.

2) Gives the variable type (integer, real, double, character) needed for <buffer>.
If not a simple variable but a field variable is needed the variable type is followed by ”array”.

System Functions4–54

1070 073 740-111 (02.11) GB

Function supplies /
refresh1)

Syntax /
description

<buffer> is
of type 2)

Type of programming (inch/metric) Integer MCODS(18,<channel>,<version>,<buffer>,1)

S Supplies in <buffer> the programming type of the axes present on
the <channel>:
0: Inch
1: Metric
2: Degree
3: No axis present

Maximum spindle speed Real, Array MCODS(19,0,<version>,<buffer>,<size>)

S Supplies in <buffer> the maximum permissible spindle speeds in
rpm of all spindles in the system.
Order: S or S1, S2, etc.
The speed limits are included in the calculation.

Minimum spindle speed Real, Array MCODS(20,0,<version>,<buffer>,<size>)

S Supplies in <buffer> the minimum permissible spindle speeds in rpm
of all spindles in the system.
Order: S or S1, S2, etc.
The speed limits are included in the calculation.

Programmed end position without
shifts

Real, Array MCODS(23,0,<version>,<buffer>,<size>)

S Like MCODS(16...) but without shifts.

Programmed path feed Real MCODS(24,<channel>,<version>,<buffer>,1)

S Supplies in <buffer> the programmed path feed of <channel> in the
unit mm/min.

Programmed spindle speeds Real, Array MCODS(25,0,<version>,<buffer>,<size>)

S Supplies in <buffer> the programmed speeds of all spindle axes in
the system in rpm.
Order: S or S1, S2, etc.

Status ”Axes referenced” Integer,
Array

MCODS(26,–1,<version>,<buffer>,<size>)

E Supplies in <buffer> in ascending, channel-independent order the
value 0 or 1 as signal ”Axes referenced” for each feed and auxiliary
axis:

Axis referenced: 1
Axis not referenced: 0

Jog speeds Real, Array MCODS(27,–1,<version>,<buffer>,<size>)

E Supplies in <buffer> in ascending, channel-independent order the
current jog speeds of all feed and auxiliary axes in the system:

in the case of linear axes in mm/min
in the case of rotary axes in rpm

1) Data which the control unit provides cyclically are identified with ”Z”.
Data available after each switching of blocks are identified with ”S”.
Data which appear in irregular periods after a change are identified with an ”E”.
Data which appear immediately when called for are identified with an ”I”.
Data which never change (they only need to be called for once) are identified with ”R”.

2) Gives the variable type (integer, real, double, character) needed for <buffer>.
If not a simple variable but a field variable is needed the variable type is followed by ”array”.

System Functions 4–55

1070 073 740-111 (02.11) GB

Function supplies /
refresh1)

Syntax /
description

<buffer> is
of type 2)

Messages in the part program Character,
Array

MCODS(28,<channel>,<version>,<buffer>,80)

E Supplies in <buffer> the messages programmed in <channel> by
MSG command.

Status ”Test mode” Integer MCODS(29,0,<version>,<buffer>,1)

E Supplies in <buffer> the value 1 if the test mode is activated.
Otherwise 0.

Path and name of main program Character,
Array

MCODS(30,<channel>,<version>,<buffer>,<size>)

E Supplies in <buffer> the path incl. the name of the main program
selected in <channel> as a string.
A value existing in <version> is ignored in the function call of the
function.
For files stored in the Typ3-internal file system the value 31 must be
given in <size> (path incl. file name can contain max. 30 characters
here).
For files stored in mounted file systems the value in <size> depends
from the maximum possible number of characters supported by the
external file system for path and name of a file.

1) Data which the control unit provides cyclically are identified with ”Z”.
Data available after each switching of blocks are identified with ”S”.
Data which appear in irregular periods after a change are identified with an ”E”.
Data which appear immediately when called for are identified with an ”I”.
Data which never change (they only need to be called for once) are identified with ”R”.

2) Gives the variable type (integer, real, double, character) needed for <buffer>.
If not a simple variable but a field variable is needed the variable type is followed by ”array”.

System Functions4–56

1070 073 740-111 (02.11) GB

Function supplies /
refresh1)

Syntax /
description

<buffer> is
of type 2)

Channel operation mode Integer MCODS(31,<channel>,<version>,<buffer>,1)

E Supplies in <buffer> the operation mode active in <channel>:

0 No operation mode and therefore no process is active.
1 Jog mode. Axes can be jogged (+/–)
2 Traverse to reference point. Axes can be started with the signals

manual+ / manual–.
3 Reserved.
4 Manual data input. Individual NC blocks can be specified for ma-

chining.
5 Automatic. Part programs are completely executed.
6 Automatic (program block). Individual blocks of a part program

are executed one after the other. Each individual block is pre-
pared and started with cycle start.

7 Automatic (single step). From an individual NC block in the part
program the NC may generate and process several blocks.
In this operation mode cycle start always passes an individual
block on to the interpolator for machining.

8 Reserved.
9 Reserved.
10 Automatic (single block). With cycle start all blocks generated

and prepared on the basis of a single NC block in the part pro-
gram are forwarded to the interpolator for machining.

11 Return to path. Axes can be removed manually from the contour
and automatically or manually returned to it.

12: CPL debugger (program block operation):
Single blocks are executed as they are specified in the part pro-
gram.

13: CPL debugger (automatic operation):
All blocks up to the next breakpoint are executed.

1) Data which the control unit provides cyclically are identified with ”Z”.
Data available after each switching of blocks are identified with ”S”.
Data which appear in irregular periods after a change are identified with an ”E”.
Data which appear immediately when called for are identified with an ”I”.
Data which never change (they only need to be called for once) are identified with ”R”.

2) Gives the variable type (integer, real, double, character) needed for <buffer>.
If not a simple variable but a field variable is needed the variable type is followed by ”array”.

System Functions 4–57

1070 073 740-111 (02.11) GB

Function supplies /
refresh1)

Syntax /
description

<buffer> is
of type 2)

SAV and IPO states Integer, Array MCODS(32,<channel>,<version>,<buffer>,2)

E Supplies in <buffer> from <channel>
– the SAV state and
– the state of the interpolator.

The following values are defined as SAV state:

1: The operation mode is not active. A process can be selected.
2: The operation mode is ready. A process can be started.
3: The operation mode is active. A program or NC block is being

processed.
4: Reserved.
5: Reserved.
6: An error has occurred in the operation mode which can only be

remedied by control reset or deselection of program.
7: Reserved.
8: Control reset momentarily in progress.
9: A program is selected and is momentarily in preparation (e.g.

linked).
10: ”Cancel distance to go” has been triggered and is not yet com-

pleted.
11: The operation mode is active and is reprocessing existing buff-

ers.
12: The operation mode is ready. The process is at the start of the

program and can be started.
13: When entering buffered NC blocks, all blocks have been execu-

ted. It is waiting for the next entry.

The following values are defined as IPO state:

1: Interpolator running
2: Interpolator running down due to feed halt.
3: Interpolator has stopped the axes.

Axis names Character,
Array

MCODS(33,<channel>,<version>,<buffer>,<size>)

R If you specify the value ”–1” for <channel> the names of all physical
axes will be supplied in <buffer> separated by the character ”0”
(zero byte) in ascending order of 9 bytes each.
If you specify an actually existing channel number for <channel> the
names of all axes on the specified channel separated by the
character ”0” (zero byte) will be supplied in <buffer> in ascending
order.
Names which are shorter than 8 characters will be filled with blanks
up until the 8th character.
The size of the <buffer> is specified in <size>. It can be a maximum
of 144 bytes with 16 axes (9*16).

For an example see Chap. 4.14.3 page 4–76.

1) Data which the control unit provides cyclically are identified with ”Z”.
Data available after each switching of blocks are identified with ”S”.
Data which appear in irregular periods after a change are identified with an ”E”.
Data which appear immediately when called for are identified with an ”I”.
Data which never change (they only need to be called for once) are identified with ”R”.

2) Gives the variable type (integer, real, double, character) needed for <buffer>.
If not a simple variable but a field variable is needed the variable type is followed by ”array”.

System Functions4–58

1070 073 740-111 (02.11) GB

Function supplies /
refresh1)

Syntax /
description

<buffer> is
of type 2)

Number of feed axes, auxiliary
axes, spindles;
movement types, drive types

Integer,
Array

MCODS(34,–1,<version>,<buffer>,<size>)

R Reserved. Use MCODS(45...) instead.

Actual axis position Real, Array MCODS(35,–1,<version>,<buffer>,<size>)

Z Supplies in <buffer> in ascending, channel-independent order the
actual positions of all feed and auxiliary axes transmitted to the
CNC from the drives by SERCOS ID no.:

in the case of linear axes in mm
in the case of rotary axes in degrees

”Set actual value” (e.g. G92) is not included in the calculation of the
values.

Actual spindle speed Real, Array MCODS(36,–1,<version>,<buffer>,<size>)

Z Supplies in <buffer> in ascending order (S and S1, S2, S3, etc.) the
actual spindle speeds of all spindles in the system.

Included in the calculation are the potentiometer, the speed limits
(G192, G292) and the limits by the gear.
If a spindle is not present 0.0 is returned at the relevant location in
<buffer>.

Axis program value
(program coordinate system)

Double,
Array

MCODS(37,–1,<version>,<buffer>,<size>)

Z Supplies in <buffer> in ascending, channel-independent order the
commanded workpiece-related positions of the interpolator for all
feed axes in the system:

in the case of linear axes in mm
in the case of rotary axes in degrees

”Set actual value” (e.g. G92) and axis zero shift (G54...G59,
G154...G159, G254...G259) are not included in the calculation of the
values.

Actual axis values
(machine coordinate system)

Double,
Array

MCODS(38,–1,<version>,<buffer>,<size>)

Z Supplies in <buffer> in ascending, channel-independent order
“actual values” referring to the machine coordinates system
(Cartesian) currently used.
The values are calculated from the axis actual positions by applying
the machine-specific kinematic forward transformation (axis
transformation), specified for each channel. If no kinematic axis
transformation is active, MCODS(38) will supply identical values like
MCODS(35).
The prerequisite for the application of MCODS(38) is a
corresponding setting of the MACODA parameter 9030 00002,
which is being used to configure, whether and how frequently actual
values of the machine coordinate system are being calculated.

1) Data which the control unit provides cyclically are identified with ”Z”.
Data available after each switching of blocks are identified with ”S”.
Data which appear in irregular periods after a change are identified with an ”E”.
Data which appear immediately when called for are identified with an ”I”.
Data which never change (they only need to be called for once) are identified with ”R”.

2) Gives the variable type (integer, real, double, character) needed for <buffer>.
If not a simple variable but a field variable is needed the variable type is followed by ”array”.

System Functions 4–59

1070 073 740-111 (02.11) GB

Function supplies /
refresh1)

Syntax /
description

<buffer> is
of type 2)

Status ”Dwell active” Integer MCODS(39,<channel>,<version>,<buffer>,1)

E Supplies in <buffer> the value 1 if a dwell is active in <channel>.
Otherwise 0.

Status ”Acknowledgement-com-
pulsory auxiliary function active”

Integer MCODS(40,<channel>,<version>,<buffer>,1)

E Supplies in <buffer> the value 1 if an auxiliary function is waiting for
acknowledgement in <channel>. Otherwise 0.

Status ”Load release” Integer MCODS(41,<channel>,<version>,<buffer>,1)

E Supplies in <buffer> the value 1 if the NC input signal ”Block transfer
inhibit” is set in <channel>. Otherwise 0.

Customer-specific data MCODS(42,<channel>,<version>,<buffer>,<size>,
<P1>)

E Supplies in <buffer> customer-specific data from <channel>.
In <P1> an integer value in the range from 0 to 65535 can be
transferred during the function call to the customer server for the
selection of certain data.
The function is intended for customer’s own developments in the
area ”NC core”.

Assignment of axis to channel Integer, Array MCODS(43,–1,<version>,<buffer>,<size>)

E Supplies the following information in <buffer> for each physical axis
in the system:
>=0: Channel number of the axis (=> axis is synchronous)
–1: Axis is asynchronous
–2: Axis is a spindle
–3: Axis is not defined

Number of channels Integer, Array MCODS(44,–1,<version>,<buffer>,3)

R Supplies in <buffer> in ascending order

D the number of usable user channels

D the number of channels at the interface

D the number of all internal and external channels

Number of axes Integer, Array MCODS(45,–1,<version>,<buffer>,3)

R Supplies in <buffer> in ascending order

D the number of the drives existing in the system

D the number of existing axes

D the number of existing spindles
1) Data which the control unit provides cyclically are identified with ”Z”.

Data available after each switching of blocks are identified with ”S”.
Data which appear in irregular periods after a change are identified with an ”E”.
Data which appear immediately when called for are identified with an ”I”.
Data which never change (they only need to be called for once) are identified with ”R”.

2) Gives the variable type (integer, real, double, character) needed for <buffer>.
If not a simple variable but a field variable is needed the variable type is followed by ”array”.

System Functions4–60

1070 073 740-111 (02.11) GB

Function supplies /
refresh1)

Syntax /
description

<buffer> is
of type 2)

Return to path strategy and
recording of jog movements

Integer, Array MCODS(46,<channel>,<version>,<buffer>,3)

E Supplies in <buffer> in ascending order for the specified <channel>

D the return to path operation mode

D the return-to-path point

D the recording status of the jog movements.

As return to path operation mode the following values are poss-
ible:

1 Automatic return to path
2 Return to path with single block
3 Manual return to path

For the return-to-path point:

1 Return to path to the startpoint
2 Return to path to the endpoint
3 Return to path to the breakpoint

For the recording status:

0 Recording not active
1 Recording active

Status ”Travel command” Integer, Array MCODS(47,<channel>,<version>,<buffer>,<size>)

Z If you specify the value ”–1” for <channel> the travel command
signals of all physical axes will be supplied in ascending order in
<buffer>.
If you specify an actually existing channel number for <channel> the
travel command signals of all axes on the specified channel and
behind it those of the asynchronous axes will be supplied in
ascending order in <buffer>.

Travel command is present: 1
Travel command is not present: 0

A travel command is always set as soon as an axis is to execute a
traversing movement by manual input or by input in the part
program.

1) Data which the control unit provides cyclically are identified with ”Z”.
Data available after each switching of blocks are identified with ”S”.
Data which appear in irregular periods after a change are identified with an ”E”.
Data which appear immediately when called for are identified with an ”I”.
Data which never change (they only need to be called for once) are identified with ”R”.

2) Gives the variable type (integer, real, double, character) needed for <buffer>.
If not a simple variable but a field variable is needed the variable type is followed by ”array”.

System Functions 4–61

1070 073 740-111 (02.11) GB

Function supplies /
refresh1)

Syntax /
description

<buffer> is
of type 2)

Axis mode Integer, Array MCODS(48,<channel>,<version>,<buffer>,<size>)

E If you specify the value ”–1” for <channel> the operation modes of all
physical axes will be supplied in ascending order in <buffer>.
If you specify an actually existing channel number for <channel> the
operation modes of all axes on the specified channel and behind
it those of the asynchronous axes will be supplied in ascending
order in <buffer>.

Possible return values for the operation values:

0: No operation mode and therefore no process is active.
1: Jog mode. Axes can be jogged (+/–)
2: Traverse to reference point. Axes can be started with the signals

manual+ / manual–.
3: Reserved.
4: Manual data input. Individual NC blocks can be specified for ma-

chining.
5: Automatic. Part programs are completely executed.
6: Automatic (program block). Individual blocks of a part program

are executed one after the other. Each individual block is pre-
pared and started with cycle start.

7: Automatic (single step). From an individual NC block in the part
program the NC may generate and prepare several blocks.
In this operation mode cycle start always passes an individual
block on to the interpolator for machining.

8: Reserved.
9: Reserved.
10: Automatic (single block). With cycle start all blocks generated

and prepared on the basis of a single NC block in the part pro-
gram are forwarded to the interpolator for machining.

11: Return to path. Axes can be removed manually from the contour
and automatically or manually returned to it.

Status ”Feed inhibit” Integer, Array MCODS(49,<channel>,<version>,<buffer>,<size>)

E If you specify the value ”–1” for <channel> the signals of the feed
inhibit of all physical axes will be supplied in ascending order in
<buffer>.
If you specify an actually existing channel number for <channel> the
feed inhibit of all axes on the specified channel and behind it
those of the asynchronous axes will be supplied in ascending
order in <buffer>.
1: Feed inhibit is present
0: Feed inhibit is not present

1) Data which the control unit provides cyclically are identified with ”Z”.
Data available after each switching of blocks are identified with ”S”.
Data which appear in irregular periods after a change are identified with an ”E”.
Data which appear immediately when called for are identified with an ”I”.
Data which never change (they only need to be called for once) are identified with ”R”.

2) Gives the variable type (integer, real, double, character) needed for <buffer>.
If not a simple variable but a field variable is needed the variable type is followed by ”array”.

System Functions4–62

1070 073 740-111 (02.11) GB

Function supplies /
refresh1)

Syntax /
description

<buffer> is
of type 2)

Value of the axis potentiometers Real, Array MCODS(50,<channel>,<version>,<buffer>,<size>)

E If you specify the value ”–1” for <channel> the values of the axis
potentiometers of all physical axes will be supplied in ascending
order in <buffer> (in 0.01 percent).
If you specify an actually existing channel number for <channel> for
each axis on the specified channel the value of the channel
potentiometer and then the values of the axis potentiometers of
all asynchronous axes will be supplied in ascending order in
<buffer> (in 0.01 percent).

Active external tool compensation
values

Real, Array MCODS(51,<channel>,<version>,<buffer>,<size>)

S Supplies in <buffer> the external tool compensation values active in
<channel>.
Order: radius, length compensation
If no external tool compensation is active 0.0 will be returned in each
case.

Active external axis zero shift
values

Real, Array MCODS(52,<channel>,<version>,<buffer>,<size>)

S Supplies in <buffer> the external axis zero shift values active in
<channel>.
Order: 1st logical axis, ... 8th logical axis
If no external shift is active 0.0 will be returned in each case.

Unit of measurement of the axes Integer, Array MCODS(53,<channel>,<version>,<buffer>,<size>)

E If you specify the value ”–1” for <channel> the units of measurement
(metric, inch, degree) of all physical axes will be supplied in
ascending order in <buffer>.
If you specify an actually existing channel number for <channel> the
unit of measurement for each axis on the specified channel and
then the unit of measurement of all asynchronous axes will be
supplied in ascending order in <buffer>.

In the case of asynchronous linear axes in the axis modes ”Jog” and
”Traverse to reference point” the axis interface determines the unit of
measurement. If no axis mode is specified ”metric” is supplied.
In the case of synchronous linear axes in the channel modes ”Jog”
and ”Traverse to reference point” the axis interface determines the
unit of measurement. In the other operation modes it depends on the
channel unit of measurement metric/inch (G70, G71).
With rotary axes and spindles the measuring unit ”degrees” is used,
with Hirth axes with position programming a corresponding
measuring unit will be supplied.

Possible return values for the units of measurement:

0: Inch
1: Metric
2: Degree
3: Axis not present
4: position-programmable Hirth axis

1) Data which the control unit provides cyclically are identified with ”Z”.
Data available after each switching of blocks are identified with ”S”.
Data which appear in irregular periods after a change are identified with an ”E”.
Data which appear immediately when called for are identified with an ”I”.
Data which never change (they only need to be called for once) are identified with ”R”.

2) Gives the variable type (integer, real, double, character) needed for <buffer>.
If not a simple variable but a field variable is needed the variable type is followed by ”array”.

System Functions 4–63

1070 073 740-111 (02.11) GB

Function supplies /
refresh1)

Syntax /
description

<buffer> is
of type 2)

Active general tool compensation Real, Array MCODS(54,<channel>,<version>,<buffer>,<size>)

S Supplies in <buffer> the actual values of general tool compensation
in <channel>.

Order:

D Radius compensation

D L3 length compensation

D L1 length compensation

D L2 length compensation

D Tool orientation

D Compensation type

The following compensation types are defined:
0: no compensation
1: drill tool
2: milling tool
3: lathe tool
4: anglehead tool

If no general tool compensation is active 0.0 will be returned in each
case.

Manufacturer’s version Character,
Array

MCODS(55,–1,<version>,<buffer>,<size>,
<axis number>)

R Provides the manufacturer’s version of the drive. The axis selection
occurs in the parameter <axis number> by putting in the physical
axis (No. 0 also supplies the 1st axis). The manufacturer’s version
corresponds to the SERCOS ID No. S-0-0030. An array with a
maximum of 40 characters is delivered by the parameter <buffer>.

Control device type Character,
Array

MCODS(56,–1,<version>,<buffer>,<size>,
<axis number>)

R Provides the Control device type of the drive. The axis selection
occurs in the parameter <axis number> by putting in the physical
axis (No. 0 also supplies the 1st axis). The Control device type
corresponds to the SERCOS ID No. S-0-0140. An array with a
maximum of 40 characters is delivered by the parameter <buffer>.

Motor type Character,
Array

MCODS(57,–1,<version>,<buffer>,<size>,
<axis number>)

R Provides the motor type of the drive. The axis selection occurs in the
parameter <axis number> by putting in the physical axis. (No. 0 also
supplies the 1st axis).The motor type corresponds to the SERCOS
SERCOS ID No. S-0-0141. An array with a maximum of 40
characters is delivered by the parameter <buffer>.

1) Data which the control unit provides cyclically are identified with ”Z”.
Data available after each switching of blocks are identified with ”S”.
Data which appear in irregular periods after a change are identified with an ”E”.
Data which appear immediately when called for are identified with an ”I”.
Data which never change (they only need to be called for once) are identified with ”R”.

2) Gives the variable type (integer, real, double, character) needed for <buffer>.
If not a simple variable but a field variable is needed the variable type is followed by ”array”.

System Functions4–64

1070 073 740-111 (02.11) GB

Function supplies /
refresh1)

Syntax /
description

<buffer> is
of type 2)

Default assignment of axis to
channel

Integer MCODS(58,–1,<version>,<buffer>,<size>)

R Supplies in <buffer> the following default assignment for each
physical axes in the system:
>=0: channel number of the axis (=>axis is synchronous)
–1: Axis is asynchronous
–2: Axis is a spindle
–3: Axis is not defined

In the case of 16 axes the <buffer> must have <size> 16 (integer)

Active logical axis names Character,
Array

MCODS(59,<channel>,<version>,<buffer>,<size>)

E If the value ”–1” is entered for the <channel> then the names of all
active logical axes will appear in <buffer>, separated by the
character ”0” (zero byte) in increasing order at 9 bytes each.
If an already existing channel number is entered for <channel> then
all the names of all axes on the given channel will appear in
<buffer>, separated by the character ”0” (zero byte) in increasing
order.
Names which are shorter than 8 characters will be completed with
blanks up until the 8th character.
The size of the <buffer> appears in <size>. It can be a maximum of
144 bytes with 16 axes (9*16).

Example see chapter 4.14.3 page 4–76.

Logical Axis Names
Default Setting

Character,
Array

MCODS(60,<channel>,<version>,<buffer>,<size>)

R If the value ”–1” is entered for the <channel> then the names of all
logical axes (in the default setting) appear in <buffer>, separated
by the character ”0” (zero byte) in increasing order at 9 bytes each.
If an already existing channel number is entered for <channel> then
all the names of all axes on the given channel will appear in
<buffer>, separated by the character ”0” (zero byte) in increasing
order.
Names which are shorter than 8 characters will be completed with
blanks up until the 8th character.
The size of the <buffer> appears in <size>. It can be a maximum of
144 bytes with 16 axes (9*16).

Example see chapter 4.14.3 page 4–76.

1) Data which the control unit provides cyclically are identified with ”Z”.
Data available after each switching of blocks are identified with ”S”.
Data which appear in irregular periods after a change are identified with an ”E”.
Data which appear immediately when called for are identified with an ”I”.
Data which never change (they only need to be called for once) are identified with ”R”.

2) Gives the variable type (integer, real, double, character) needed for <buffer>.
If not a simple variable but a field variable is needed the variable type is followed by ”array”.

System Functions 4–65

1070 073 740-111 (02.11) GB

Function supplies /
refresh1)

Syntax /
description

<buffer> is
of type 2)

Measuring units of axes
Default setting

Integer, Array MCODS(61,<channel>,<version>,<buffer>,<size>)

R If the value ”–1” is entered for the <channel> then the measuring
units (metric, inch, degrees) of all physical axes (in the default
setting) will appear in <buffer>, separated by the character ”0” (zero
byte) in increasing order at 9 bytes each.

If an already existing channel number is entered for <channel> then
all the names of all axes on the given channel will appear in
<buffer>, separated by the character ”0” (zero byte) in increasing
order.

D Asynchronous linear axes are given in “metric”.

D With synchronous axes the measuring unit depends on the
power-up condition after the start
(MACODA parameter 7060 00010): ”metric/inch” (G70/G71)

D With rotary axes and spindles the measuring unit ”degrees” is
used, with Hirth axes with position programming a corresponding
measuring unit will be supplied.

Possible return values for the measuring units:
0: inch
1: metric
2: degree
3: axis not available
4: position-programmable Hirth axis

In the case of 16 axes the <buffer> must have <size> 16 (integer).

ID number of the cyclical axis
message

Integer, Array MCODS(62,–1,<channel>,<version>,<buffer>,
<size>,<ID number>)

Z Supplies the value of an <ID number> from the cyclic axis telegram
for all axes.
If the <ID number> is not in the cyclic telegram the value
NCS_MCO_NOT_IN_CYCL_AT_C (–2147483648) is given.
The value is “integer” in SERCOS weighting.

In the case of 16 axes the <buffer> must have <size> 16 (integer).

Movement function of the spindles Integer, Array MCODS(63,–1,<version>,<buffer>,<size>)

E Supplies the movement function of all spindles.
Movement function codes:
0: Spindle is not defined
1: Turn right (clockwise) without coolant
2: Turn right (clockwise) with coolant
3: Turn left (counter-clockwise) without coolant
4: Turn left (counter-clockwise) with coolant
5: Spindel stop
6: Spindle orientation

In the case of 8 spindles the <buffer> must have the <size> 8
(integer).

1) Data which the control unit provides cyclically are identified with ”Z”.
Data available after each switching of blocks are identified with ”S”.
Data which appear in irregular periods after a change are identified with an ”E”.
Data which appear immediately when called for are identified with an ”I”.
Data which never change (they only need to be called for once) are identified with ”R”.

2) Gives the variable type (integer, real, double, character) needed for <buffer>.
If not a simple variable but a field variable is needed the variable type is followed by ”array”.

System Functions4–66

1070 073 740-111 (02.11) GB

Function supplies /
refresh1)

Syntax /
description

<buffer> is
of type 2)

Gear range of the spindles Integer, Array MCODS(64,–1,<version>,<buffer>,<size>)

E Supplies the gear range of the spindles.
Gear range codes:
40: automatic gear range selection
41: gear 1
42: gear 2
43: gear 3
44: gear 4
48: neutral gear

In the case of 8 spindles the <buffer> must have the <size> 8
(integer).

Group assignment of the spindles Integer, Array MCODS(65,–1,<version>,<buffer>,<size>)

E Supplies the group assignment of the spindles.
Group classification:
0: no group,
1 .. 4: group number

In the case of 8 spindles the <buffer> must have the <size> 8
(integer).

Automatic or manual gear
selection

Integer, Array MCODS(66,–1,<version>,<buffer>,<size>)

E Supplies the automatic or manual selection of gears.
Gear selection:
0: manual
1: automatic

In the case of 8 spindles the <buffer> must have the <size> 8
(integer).

Information as to whether gear
switching is active

Integer,
Array

MCODS(67,–1,<version>,<buffer>,<size>)

E Supplies information whether or not gear switching is active.
Gear switching:
0: gear switching is not active.
1: gear switching is active.

In the case of 8 spindles the <buffer> must have the <size> 8
(integer).

Skip block (activate) Integer,
Array

MCODS(68,<channel>,<version>,<buffer>,2)

E Shows the condition of the NC output signal skip block activate
and the input signal skip block of <channel> in <buffer>.

Optional stop (activated) Integer,
Array

MCODS(69,<channel>,<version>,<buffer>,2)

E Shows the condition of the NC output signal Optional stop
activated and the input signal Optional stop of the <channel> in
<buffer>.

1) Data which the control unit provides cyclically are identified with ”Z”.
Data available after each switching of blocks are identified with ”S”.
Data which appear in irregular periods after a change are identified with an ”E”.
Data which appear immediately when called for are identified with an ”I”.
Data which never change (they only need to be called for once) are identified with ”R”.

2) Gives the variable type (integer, real, double, character) needed for <buffer>.
If not a simple variable but a field variable is needed the variable type is followed by ”array”.

System Functions 4–67

1070 073 740-111 (02.11) GB

Function supplies /
refresh1)

Syntax /
description

<buffer> is
of type 2)

Automatic program re-selection
acitve

Integer MCODS(70,<channel>,<version>,<buffer>,1)

I <buffer> shows whether the automatic program re-selection has
been applied on the given channel:
0: function has not been applied
1: function has been applied

Workpiece coordinates Real, Array MCODS(71,<channel>,<version>,<buffer>,<size>)

Z Supplies the values of the workpiece coordinates (WCS) of the
given channel to <buffer>: first all working range coordinates, then
the pseudo coordinates of the channel.

Basis coordinates of the setpoints Real, Array MCODS(72,<channel>,<version>,<buffer>,<size>)

Z Supplies the setpoint values of the basis coordinates (BCS) of
the given channel to <buffer>: first all working range coordinates,
then the pseudo coordinates of the channel.

Axis coordinates Real, Array MCODS(73,<channel>,<version>,<buffer>,<size>)

Z Supplies the values of the axis coordinates (ACS) of the given
channel to <buffer>.
Channel = –1: all axis coordinates
0< channel p max. channel: data of the specified channel

Machine coordinates Real, Array MCODS(74,<channel>,<version>,<buffer>,<size>)

Z Supplies the values of the machine coordinates (MCS) of the given
channel to <buffer>.
Channel = –1: all axis coordinates
0< Channel p max. channel: Data of the specified channel

Basis coordinates actual values Real, Array MCODS(75,<channel>,<version>,<buffer>,<size>)

Z Supplies the actual values of the basis coordinates (BCS) of the
given channel to <buffer>: first all working range coordinates, then
the pseudo coordinates of the channel.

Programmed coordinate end
points

Real, Array MCODS(76,<channel>,<version>,<buffer>,<size>)

S Supplies the programmed coordinate end points of the given
channel to <buffer>: first all working range coordinates, then the
pseudo coordinates of the channels.

Coordinate end points Real, Array MCODS(77,<channel>,<version>,<buffer>,<size>)

S Supplies the end points of the coordinates of the given channel to
<buffer> including the shifts: first all working range coordinates, then
the pseudo coordinates of the channel.

1) Data which the control unit provides cyclically are identified with ”Z”.
Data available after each switching of blocks are identified with ”S”.
Data which appear in irregular periods after a change are identified with an ”E”.
Data which appear immediately when called for are identified with an ”I”.
Data which never change (they only need to be called for once) are identified with ”R”.

2) Gives the variable type (integer, real, double, character) needed for <buffer>.
If not a simple variable but a field variable is needed the variable type is followed by ”array”.

System Functions4–68

1070 073 740-111 (02.11) GB

Function supplies /
refresh1)

Syntax /
description

<buffer> is
of type 2)

Coordinate names Character,
Array

MCODS(78,<channel>,<version>,<buffer>,<size>)

E Supplies the names of the active coordinates of the given channel
to <buffer>: first all working range coordinates, then the pseudo
coordinates of the channel.

INPOS status coordinates Integer,
Array

MCODS(79,<channel>,<version>,<buffer>,<size>)

Z Supplies the INPOS status of the coordinates of the given channel
to <buffer>: first all working range coordinates, then the pseudo
coordinates of the channel.
The status for a working range coordinate is derived from the logical
AND operation of the axis signals.

Reference status of the
coordinates

Integer,
Array

MCODS(80,<channel>,<version>,<buffer>,<size>)

E Supplies the reference point status of the coordinates of the
given channel to <buffer>: first all working range coordinates, then
the pseudo coordinates of the channel.
The status for a working range coordinate is derived from the logical
AND operation of the axis signals.

Measuring units of the
coordinates

Integer,
Array

MCODS(81,<channel>,<version>,<buffer>,<size>)

E Supplies the measuring units of the coordinates of the given
channel to <buffer>: first all working range coordinates, then the
pseudo coordinates of the channel.
Possible return values for the measuring units:
0: inches
1: metric
2: degrees
3: coordinate is not available

Number of coordinates Integer,
Array

MCODS(82,<channel>,<version>,<buffer>,<size>)

E Supplies the number of coordinates/axes in 3 elements of the
given channel to <buffer>:
1st value: the total number of axes of the channel
2nd value: number of working range coordinates + number of

pseudo coordinates of the channel.
3rd value: the number of pseudo coordinates of the channel.

Distance to go of the workpiece
coordinates

Real, Array MCODS(83,<channel>,<version>,<buffer>,<size>)

Z Supplies the distances to go of the workpiece coordinates
(WCS) of the given channel to <buffer>: first all working range
coordinates, then the pseudo coordinates of the channel.

1) Data which the control unit provides cyclically are identified with ”Z”.
Data available after each switching of blocks are identified with ”S”.
Data which appear in irregular periods after a change are identified with an ”E”.
Data which appear immediately when called for are identified with an ”I”.
Data which never change (they only need to be called for once) are identified with ”R”.

2) Gives the variable type (integer, real, double, character) needed for <buffer>.
If not a simple variable but a field variable is needed the variable type is followed by ”array”.

System Functions 4–69

1070 073 740-111 (02.11) GB

Function supplies /
refresh1)

Syntax /
description

<buffer> is
of type 2)

Channel waiting states Integer MCODS(87,<channel>,<version>,<buffer>,1)

E Supplies the waiting states of a channel to <buffer>.
If a channel goes into a waiting state, this function reports the
reasons for doing so.
The active waiting statesare bit-coded.
The following constant terms define the respective bits of the first
integer value, beginning with the lowest value:
0: Dwell time
1: Acknowledgement-compulsory auxiliary function
2: Block transfer inhibit
3: Feed in channel equals 0
4: Program stop with M0/M1
5: Feed hold on the channel
6: Feed inhibit on the channel or of a channel axis
7: Block transfer inhibit entered by customer
8: Synchronized movement stop between channels (ASTOP, ...)
9: Waiting for axis in the case of an axis exchange (G511)
10: Waiting for a permanent variable (WPV)
11: Waiting for an interface signal at an active time (WAITA, ...)
12: Waiting for an interface signal (WAIT(IC...)) or for a

set period of time (WAIT(,TIME%)) during block preparation
13: Motion Control Data Services (MCODS(...))

See example under 4.14.3

Online correction values (WCS) Real, Array MCODS(89, <channel>, <version>, <buffer>,
<size>)

E Supplies the values of the online correction (WCS) of the given
channel to <buffer>. First all working range coordinates, then the
pseudo coordinates of the channel.

Status of the online correction
(WCS)

Integer,
Array

MCODS(90, <channel>, <version>, <buffer>,
<size>)

E Supplies the current status of the online correction (WCS) of the
given channel to <buffer>. First all working range coordinates, then
the pseudo coordinates of the channel.
0: inactive
1: active

1) Data which the control unit provides cyclically are identified with ”Z”.
Data available after each switching of blocks are identified with ”S”.
Data which appear in irregular periods after a change are identified with an ”E”.
Data which appear immediately when called for are identified with an ”I”.
Data which never change (they only need to be called for once) are identified with ”R”.

2) Gives the variable type (integer, real, double, character) needed for <buffer>.
If not a simple variable but a field variable is needed the variable type is followed by ”array”.

System Functions4–70

1070 073 740-111 (02.11) GB

MCOPS
Invokes motion control process services of NCS by CPL. This enables con-
trolling of channels in the CNC.

General syntax:

MCOPS(<fct>,<channel>[[,[<P1>][,[<P2>],[<P3>]]],<P4>])

<fct>: Integer expression. States the function to be executed. All
the available functions are described in the following table.

<channel>: Integer expression. States the channel which the function is
to affect.

<P1>.<P4>: Optional parameters dependent on <fct>. Comma se-
quences are permissible but no comma before a closing
bracket.

. In the following table integer constants are sometimes given as pa-
rameters in the syntax. You may also program integer variables in lieu
of these constants, but they must be occupied with the specified value
at the time of the function call.

Effect Syntax / description

Cancel distance to go MCOPS(1,<channel>)

Triggers ”Cancel distance to go” on the programmed <channel>:

D After triggering distance to go, all prepared NC blocks including the rest of
the current block are discarded and newly processed.

.CPL blocks or CPL parts are not taken into consideration:

Example: The CPL variable POS had the value 10 for preparation. The NC word
X[POS] is interpreted as X10, after ”cancel distance to go”, although POS may
have a completely different value at this moment.

Any corrective values that may have changed are taken into consideration.

D The indicated end point is set on the current position in the display, whereby
the indicated distance to go is simultaneously canceled. The <channel>
subsequently returns to the condition NC ready (NC-O 16.0 NC ready).

D After “Cycle start” (NC-I 1.0 Cycle start), the program continues at the break
point, taking the new corrective values into consideration.

Example for application of MCOPS(1, <channel>): after alteration of com-
pensation tables if the new values are also to apply to blocks already prepared.

System Functions 4–71

1070 073 740-111 (02.11) GB

Effect Syntax / description

Control reset MCOPS(2,<channel>[,<Control reset type>])

Triggers ”Control reset” on the programmed <channel>.
To trigger system control reset: <channel> = –2

D The channel initially accepts no further jobs such as program selection or
operation mode switch.

D The interpolator is stopped.

D Jobs assigned to the channel but not yet executed are discarded.

D The main program is exited.

D Altered MACODA parameters not requiring startup are adopted, e.g.
MACODA parameter 1020 00001 (software limit).

D Errors and warnings triggered by this channel are deleted.

D The interpolator is restarted.

D The power-up condition at control reset (MACODA parameter 7060 00020) is
adopted, i.e. the corresponding modal states become active.

D The channel returns the interface signal 0.2 ”Control reset executed” and is
ready again for new jobs.

D <Control reset type>: Integer expression. Sets the behavior of the functions.
The following list includes all defined behavior patterns. A code number
precedes each pattern. In order to set a certain pattern, the corresponding
code number must be transferred into <Control reset type>. If several
patterns are to be combined then the total of all the corresponding code
numbers in <Control reset type> must be transferred to the function. Up to
now the list contains only one element:

Code number:
2: If the automatic program re-selection is active, then it can be suppressed

with the value ”2” in this control reset.

Example: ERR_VAR=MCOPS(2,2,2) control reset in 2nd channel without
automatic program re-selection

Search block MCOPS(3,<channel>[,[<Start block>][,<End block>]])

Triggers ”Search block” in the selected but not yet started main program of the
programmed <channel>:

D <Start Block> and <End Block> are transferred as string expressions. In the
search for <Start Block> and <End Block> the following conventions apply:

D Blank, <Tab>, <LF> at the beginning of an NC block are ignored.

D If <Start Block> and <End Block> begin with a number and the express-
ion is not found in the program searched, the system searches for the
expression again, but this time with the symbol ”N” prefixed. In this way
e.g. ”50” also finds the NC block ”N50X100”.

D If <Start Block> and <End Block> end with a number the expression is
only found in the program searched if no further number follows directly.
E.g. ”G1X10” does not find the NC block ”G1X100”.

D If <Start Block> and <End Block> end with a letter the expression is only
found in the program searched if a blank follows directly.
E.g. ”50A” finds the NC block ”50A =1”, but not ”50A=1”.

D The machining begins with <Start Block> and ends with <End Block>. If
<Start Block> is missing or if the block is not found, the machining begins at
the beginning of the program. If <End Block> is missing or if the block is not
found, the machining stops at the end of the program.

D The NC status changes to READY.

Example: ERR_VAR=MCOPS(3,2,”N50”,”N100”)
Triggers ”Search block” on channel 2. The main program is to be executed be-
ginning at N50 up to and including N100.

System Functions4–72

1070 073 740-111 (02.11) GB

Effect Syntax / description

Select program or
select string for manual data input

MCOPS(4,<channel>[[,[<string>][,[<Start block>],[<End
block>]]], <selection type>])

Selects on the programmed <channel> a program for machining or a string for
machining under the manual data input operation mode.

D <string>: string expression. Depending on the <selection type> the sys-
tem interprets the parameter as

D path name (incl. part program name) of a part program (max. 100
characters) to be selected, or

D If 32 is specified in<selection type>: as an NC block (size max. 512 bytes
incl. final 0 byte), to be executed under the manual data input operation
mode, or

D If 32+4096 are specified in <selection type>: as several NC blocks,
which are to be executed under operation manual data input.
Several NC blocks are separated by NewLine (”\n”, Hex 0x0A). The max.
size of all NC blocks may not exceed 4096 bytes including a final 0 byte.

D <Start Block> and <End Block> define the start and end block in the part
program for machining. Handling as with MCOPS(3,..).
If the system interprets <string> as manual data input <Start Block> and
<End Block> are ignored.

System Functions 4–73

1070 073 740-111 (02.11) GB

Effect Syntax / description

D <selection type>: Integer expression. Defines the behavior of the function.
The subsequent list contains all the defined behavior patterns. Each pattern
is preceded by a code number.
If a certain behavior is set this code number must be transferred in <selection
type>.
If several behavior patterns are to be combined, the sum of all the correspon-
ding code numbers is to be transferred to the function in <selection type>.

1 During selection the system executes a link run. If there is no link
table, one will be generated for the selected main program. Link
tables are necessary if sub-program calls or CPL instructions exist in
the programs.

2 The system acknowledges the permissibility of a selection only if the
NC status changes to READY.
Normally the selection is acknowledged without waiting for the NC
status READY.

32 The system interprets <string> as manual data input. See also code
number 128.

64 Before the function selects the specified program or the specified MDI
block an active program or an active manual data input is first exited.

128 An MDI block is started immediately. We differentiate between 2
cases:
<channel> is not active: the block is executed immediately as a nor-
mal MDI block.
<channel> is already active: the block is executed immediately as a
machine function. For restrictions see code number 1024.

256 Prerequisite for traversing axes in operation mode ”jog”.
or
when movements are to take place in operation mode ”jog in work-
piece coordinates”.

512 Prerequisite for starting axes in operation mode ”Traverse to refer-
ence point”.

1024 Machine function. Acts in connection with code number 128.
An MDI block is executed parallel to the specified <channel>. In the
MDI block, however, only auxiliary functions and asynchronous axis
moves are permissible.

2048 A program which is already active is replaced by the newly selected
one. As a result, all the modal states are retained.
In the case of manual data input the old character sequence is re-
placed by the new one.

4096 Entering buffered NC blocks acts in connection with code number 32.
While preceding blocks are being executed, others can already be
specified.

Attention!:
If <selection type> 2 (waiting until the NC condition has changed
to READY) is specified and the selected program does not exist or is
not able to be executed, then the error message 6 will be returned. In
all other cases it will not be examined whether the program can be
executed. The function supplies 0 (no error occurred). A correspon-
ding run time error will be generated only during the proceeding link.

Examples:
ERR_VAR=MCOPS(4,1,”sect.cnc”,”N50”,”N100”,1)
Program selection of ”sect.cnc” on channel 1 incl. block search and link.

ERR_VAR=MCOPS(4,1,”/usr/user/p1.cnc”)
Program selection of ”p1.cnc” on channel 1 without block search and link.

ERR_VAR=MCOPS(4,1,”F1000G1X500”,,,32)
Selects on channel 1 the block ”F1000G1X500” under manual data input.

System Functions4–74

1070 073 740-111 (02.11) GB

Effect Syntax / description

Exit program MCOPS(5,<channel>,<deselection type>)

Exits a selected program or a selected MDI block in programmed <channel>.

D < deselection type> integer expression. It sets the behavior of the functions.
The following list includes all defined behavior patterns. Each pattern is
preceded by a code number. In order to set a certain pattern, the
corresponding code number must be transferred to <deselection type>. If
several patterns are to be combined, the total of all corresponding code
numbers must be transferred to <deselection type>. Up to now the list
includes only one element:

Code number:
2: If the automatic program re-selection is active, then it can be suppressed

in <deselection type> with the value ”2”.

Example: ERR_VAR=MCOPS(5,2,2) Deselection on channel 2 without
automatic program re-selection.

Start program MCOPS(6,<channel>)

Starts a selected program or a selected MDI block on the programmed
<channel>.

Specify operation mode MCOPS(7,<channel>,<operation mode>)

Specifies an operation mode on the programmed <channel>.

D <operation mode> : Integer expression. Defines the operation mode to be
switched to.

1 Jog mode. Axes can be jogged (+/–).
See also MCOPS(4..) under <selection type>: code number 256.

2 Traverse to reference point. Axes can be started with the signals
manual+ / manual–.
See also MCOPS(4..) under <selection type>: code number 512.

4 Manual data input. Individual NC blocks can be specified for machin-
ing.

5 Automatic. Part programs are completely executed.

6 Automatic (program block). Individual blocks of a part program are
executed one after the other. Each individual block is prepared and
started with cycle start.

7 Automatic (single step). From an individual NC block in the part pro-
gram the NC may generate and prepare several blocks.
In this operation mode cycle start always passes an individual block
on to the interpolator for machining.

10 Automatic (single block). With cycle start all blocks generated and
prepared on the basis of a single NC block in the part program are
forwarded to the interpolator for machining.

11 Return to path. Axes can be removed manually from the contour and
automatically or manually returned to it.

12 CPL debugger: Single blocks are processed as they appear in the
part program.

13 CPL debugger: All blocks are processed until the next break point.

14 Jog mode: movement in workpiece coordinates

System Functions 4–75

1070 073 740-111 (02.11) GB

Effect Syntax / description

A change of operation mode is only possible under the following conditions:

D The IF input signal NC-I 3.0 (operation mode specification by PLC) may not
be set.

D No program or block is selected at the NC
– or –
switching is to take place exclusively between the automatic operation
modes automatic, program block, single step or single block.

Example:
ERR_VAR=MCOPS(7,2,5)
Change of operation mode on the 2nd channel after automatic.

Change return to path strategy MCOPS(8,<channel>,<how>,<where to>)

Sets return to path strategy in the programmed <channel>.

D <how> : Integer expression. States whether

1 automatic return to path

2 return to path with single block, or

3 manual return to path is desired.

D <where to> : Integer expression. States whether return to path takes place

1 to the startpoint

2 to the endpoint, or

3 to the breakpoint.

Stop return to path recording MCOPS(9,<channel>)

Stops the return to path recording on the programmed <channel>. Jog move-
ments are now no longer recorded.

System Functions4–76

1070 073 740-111 (02.11) GB

4.14.3 Programming examples

Example 1: Immediately request SAV and interpolator state of channel 2
10 DIM BUF%(2) Make field
20 VERSION = 0 Supply data immediately
30 ERR_VAR% = MCODS(32,2,VERSION,BUF%,2) Function call

–> The SAV condition is shown in BUF%(1), the IPO condition is shown in BUF%(2).
–> The current version number of the data is shown in VERSION (important for example 2).

Example 2: Wait until SAV state of channel 2 changes to ”inactive”
<Code of Example 1>
:
10 INACTIVE = 1
20 WHILE BUF%(1) <> INACTIVE DO
30 ERR_VAR% = MCODS(32,2,version,BUF%,2)
40 END

–> After the call the function does not return to the invoking program until the SAV state
changes (VERSION contains another value <> 0; please refer to Example 1 for the version
number). The loop will not be exited until BUF%(1) contains the value 1.

Example 3: Version of axis names in MSG window
:
30 VERSION=0
40 DIM AXNAME$(512)

50 REM Request all axis names
60 ERR=MCODS(33,–1,VERSION,AXNAME$,512)
70 IF ERR=0 THEN
80 REM Determine number of axes
90 DIM AXNMB%(3)

100 VERSION=0
110 ERR=MCODS(45,–1,VERSION,AXNMB%,3)
120 ANZ=AXNMB%(2)
130 ENDIF
140 IF ERR<>0 THEN

150 PRN#(0,”Error occurred: ”,ERR)
160 ELSE
170 REM Display of axis names
180 FOR I%=0 TO (ANZ–1)
190 NAME$=MID$(AXNAME$,I%*9+1,8)

200 IF ASC(NAME$)<>0 THEN
210 REM Axis name defined
220 PRN#(0,I%+1,”. Axis name: ”,NAME$)
230 ENDIF
240 NEXT

250 ENDIF
N260 M30

System Functions 4–77

1070 073 740-111 (02.11) GB

Example 4: Channel / Waiting state

10 CHAN%=1
20 VERSION%=0
30 STATES%=0

40 ERR=MCODS(87,CHAN%,VERSION%,STATES%,1)
50 IF ERR=0 THEN
60 MASK%=1
70 WHILE MASK% <= STATES% DO
80 CASE (STATES% AND MASK%) OF

90 LABEL 1:PRN#(0,”dwell time”)
100 LABEL 2:PRN#(0,”acknowledgement–compulsory auxiliary

 function”)
110 LABEL 4:PRN#(0,”block transfer inhibit”)
120 LABEL 8:PRN#(0,”feed in channel equals 0”)

130 LABEL 16:PRN#(0,”Program stop with M0/M1”)
140 LABEL 32:PRN#(0,”feed halt in the channel”)
150 LABEL 64:PRN#(0,”feed inhibit or a channel axis”)
160 LABEL 128:PRN#(0,”block transfer inhibit entered by

 customer”)

170 LABEL 256:PRN#(0,”Synchronized movement stop
 between channels (ASTOP, ...)”)

180 LABEL 512:PRN#(0,”Waiting for axis in case of axis
 exchange (G511)”)

190 LABEL 1024:PRN#(0,”Waiting for permanent variable (WPV)”)

200 LABEL 2048:PRN#(0,”Waiting for interface signal at
 an active time (WAITA, ...)”)

210 LABEL 4096:PRN#(0,”Waiting for interface signal
 (WAIT(IC(...)))

 or”)
220 PRN#(0,” (WAIT(,TIME%)) during block

 preparation”)
230 LABEL 8192:PRN#(0,”Motion Control Data Services

 (MCODS(...))”)

240 ENDCASE
250 MASK%=MASK%*2
260 END
270 ENDIF
M30

System Functions4–78

1070 073 740-111 (02.11) GB

Example 5: Axis-channel assignment

10 REM Program queries number of axes in the system and the
15 REM axis numbers of the channel axes. Based on this information
20 REM the channel axes are traversed first to position 0 and then

40 REM to position <channel number>
50 CHAN=SD(8): REM Own channel number
60 IDCHAX=43: REM Ncs_MCoEvGetChanAxis_Id
70 IDMAXAX=45: REM Ncs_MCoEvGetMaxAxisNumber_Id
80 DIM BUF(16): REM Buffer axis–channel assignment

90 SIZE=16
100 ANZ=0: REM Maximum index of the physical axes
120 REM ChanAxis
130 VERSION=0
140 A=MCODS(IDCHAX,CHAN,VERSION,BUF,SIZE)

150 VERSION=0
160 A=MCODS(IDMAXAX,CHAN,VERSION,ANZ,1)
170 FOR I%=1 TO ANZ
180 IF BUF(I%) = CHAN THEN
N190 F1000 [AXP(I%,0,0)]: REM Traverse channel axes to 0

200 ENDIF
210 NEXT
220 FOR I%=1 TO ANZ
230 IF BUF(I%) = CHAN THEN
N24 M0

N250 WAIT
N260 F1000 [AXP(I%,CHAN,0)]:REM Traverse channel axes

 to CHAN
270 ENDIF

280 NEXT
N290 M30

Processing Character Strings 5–1

1070 073 740-111 (02.11) GB

5 Processing Character Strings

In order to process strings in CPL they must be filed in a one-dimensional
field (field: array) of identified character variables. Each character variable in
this field is addressed via an index and may contain exactly 1 character.

The CPL instructions MID$, LEN, INSTR, ASC, STR$, VAL and TRIM$ are
available for string processing.

5.1 Dimensioning character fields

DIM
In order to make a character field you must index a character variable by DIM
instruction.
In this way character fields with a max. capacity of 1024 characters can be
made (value range of the index: 1 to 1024).

If the value range is not adhered to the error message INVALID FIELD LIMIT
appears.

Example:
 1 DIM VWX$(14)

In this example the character field VWX$, consisting of 14 individual charac-
ter variables, is made. In VWX$ strings with up to 14 characters in length can
therefore be stored.

Examples:
1 DIM ABC$(1) Character field for a string with a max. length of 1 character.
2 DIM BCDE$(10) Character field for a string with a max. length of 10 characters.

Processing Character Strings5–2

1070 073 740-111 (02.11) GB

5.2 Reading characters from a definable point into a character string

MID$
This function takes parts from a string expression.
The result can be transferred to a dimensioned or to a non-dimensioned
character variable:
D A dimensioned character variable receives the complete partial string

defined in the MID$ command.
D A non-dimensioned character variable receives only the beginning ad-

dress and length of the defined partial string. If the string expression from
which the partial string was taken changes, then the non-dimensioned
character variable changes correspondingly.

If chaining (e.g. MID$(A$+B$,2,3)) occurs within the MID command, the
result can only be assigned to a character field.

MID$(<STRING expression>,<start point>[,<number of
 characters>])

<STRING expression> String expression from which parts are to be
taken.

<start point> Determines the position within the <STRING ex-
pression> character field from which the charac-
ters are to be taken.

<number of characters> Determines the number of characters taken. If
<number of characters> is not programmed, all
characters up to the end of the character field
length will be taken.

The range of values for the 2nd and 3rd parameter encompasses INTEGER
values from 1 to 1024. If the range of values is not adhered to, the fault mes-
sage INVALID PARAMETER is returned.

“NUL” is returned if a character field part which has not yet been assigned is
accessed.

Example:
1 DIM A$(10)
2 DIM B$(5)
3 A$=”ABCDEFGHIJ”
4 B$=MID$(A$,2,5)
4 C$=MID$(A$,2,5)
6 REM The variables B$ and C$ both

have the content: BCDEF
7 A$=”QRSTUVWXYZ”
8 REM The variable B$ has the content: BCDEF

The variable C$ has the content: RSTUV

Processing Character Strings 5–3

1070 073 740-111 (02.11) GB

5.3 Modifying character strings

MID$
The MID$ instruction overwrites parts of a character field.

MID$(<character field>,<start point>[,<number of
 characters>])

<character field> Character field in which parts are to be overwrit-
ten.

<start point> Determines from which position in the <character
field> the characters are to be overwritten.
The <start point> value may exceed the number
of previously assigned components (length) by a
maximum of 1.

<number of characters> Determines the number of characters which are
overwritten. If <number of characters> is not pro-
grammed, all assigned characters are entered in
<character field> in so far as the dimensioning of
the character field allows.

The range of values for the 2nd and 3rd parameters is between 1 to 1024. If
the range of values is not adhered to, the fault message INVALID PARAME-
TER appears.

Example:
1 DIM A$(10)
2 A$= ”ABC” Length of A$ is 3.
3 MID$(A$,4,3)=”DEF”

The 4th to 6th components of the character field are written. This is permissi-
ble because the first three components have already been assigned.

Example:
1 DIM A$(10)
2 A$= ”ABC” Length of A$ is 3.
3 MID$(A$,5,3)=”DEF”

An attempt is made to inscribe the 5th to 7th components of the character
field. This, however, results in the error message CHARACTER FIELD NOT
ASSIGNED, because the 4th component has not yet been assigned.

If more characters are assigned than permitted by the maximum character
field length, these characters will be discarded.

Processing Character Strings5–4

1070 073 740-111 (02.11) GB

5.4 Character string length

LEN
Returns the number of characters in a <STRING expression>. The result is
an INTEGER value.
If the <STRING expression> is empty, LEN returns the value 0.
If the <STRING expression> is not defined, LEN returns the value –1.

LEN(<STRING expression>)

Example:
1 DIM XYZ$(10)
2 XYZ$=”ABC”
3 I%=LEN(XYZ$) The INTEGER variable I% has the value 3
4 XYZ$=””
5 J%=LEN(XYZ$) The INTEGER variable J% has the value 0
6 XYZ$=NUL
7 K%=LEN(XYZ$) The INTEGER variable K% has the value –1

5.5 Searching for a character string

INSTR
INSTR (<character string>,<STRING expression>[,<start point>])

Beginning at the <start point>, INSTR searches for a <character string>
within a <STRING expression> and outputs the position of the first character
of the <character string> found in the <STRING expression> as an IN-
TEGER value.

A value of 0 is returned if the <character string> is not found.
The <character string> can be programmed as a STRING expression.

The range of values for the 3rd parameter is between 1 to 1024. The follow-
ing error message appears if the range of values is not adhered to: INVALID
PARAMETER.

Example:
1 DIM A$(8)
2 DIM B$(16)
3 A$ = ”A” : MID$(A$,2) = ”UVWXYZ”
4 B$ = ”ABCDEF UVWXYZ GH”
5 POS1% = INSTR(MID$(A$,2),B$,4)
6 POS2% = INSTR(MID$(A$,2,4),B$,10)
7 POS3% = INSTR(MID$(A$,2),B$)
Content of INTEGER variable POS1% : 8
Content of INTEGER variable POS2% : 0
Content of INTEGER variable POS3% : 8

Processing Character Strings 5–5

1070 073 740-111 (02.11) GB

5.6 Strings and numbers

ASC
ASC(<character string>)

Outputs the ordinal number of the first character (ASCII code) from the
<character string> as an INTEGER value.
If the <character string> is empty or not defined, ASC returns the value –1.

<character string> must be a STRING expression.
ASC is the reversal of CHR$.

Example:
10 DIM A$(1)
20 A$ = ”ABC”
30 B$ = ”BCD”
40 I% = ASC(A$) Content of INTEGER variable I% : 65
50 J% = ASC(B$) Content of INTEGER variable J% : 66
60 A$ = ””
70 K% = ASC(A$) Content of INTEGER variable K% : –1
80 A$ = NUL
90 L% = ASC(A$) Content of INTEGER variable L% : –1

CHR$
CHR$ is the reversal of ASC.

CHR$(<integer expression>)

Converts an <integer expression> into the corresponding ASCII character.
All ASCII character decimal significants appear in the “ASCII character set”
table in the Annex of this manual.

Example:
10 DIM A$(1)
20 I% = 65
30 A$ = CHR$(I%)
Content of string variable A$: ”A”

Processing Character Strings5–6

1070 073 740-111 (02.11) GB

STR$
STR$([<format string>,]<value>)

Converts the numerical expression <value> to a string which can only be as-
signed to a character field. Assignment to a STRING variable leads to a run-
time error.

<value> may be an INTEGER or REAL expression of single and double pre-
cision.

If <format string> is programmed, the string can be output formatted. The
symbol “#” indicates digits and “.” indicates decimal points. If <format string>
is not programmed, outputs are in standard format.

Standard formats:
INTEGER number: 9 digits
Single-precision REAL number: 4 digits before, and 3 after the decimal

point.
Double-precision REAL number: 9 digits before, and 6 after the decimal

point.

Example:
10 DIM A$(50)
20 DIM B$(21)
30 A$ = STR$(”number = ##.###”,(37/3))
40 B$ = STR$(2.5)

Content of character field A$: ”number = 12.333”
Content of character field B$: ” 2.500”

Processing Character Strings 5–7

1070 073 740-111 (02.11) GB

VAL
VAL(<STRING expression>)

Returns the numerical value for a <STRING expression>. If the string con-
tains a character other than a leading space, the leading “+” or “–” sign, the
numbers 0 to 9 or the decimal point “.”, the conversion will be performed up to
this (other) character. Leading spaces and leading zeros are ignored for pur-
poses of value formation. If none of the characters above appear, then
“NUL” is returned. If the string contains a decimal point, the result may only
be assigned to a REAL or double-precision REAL variable. Assignment to
an INTEGER variable in this case would lead to an INVALID ASSIGNMENT
error message.

Example:
1 I% = VAL(”1.23DE”)
2 K% = VAL(”123DE”)
3 J% = VAL(”ABC”)
4 R = VAL(”–1.23DE”)
5 Z = VAL(”+ 000001234TEST4365”)
6 X = VAL(”ABC1.23DE”)
7 D! = VAL(”1234567.234567”)

Line 1 leads to an error message because an assignment to an INTEGER
variable is to take place.

The value of the INTEGER variable K% is 123. The numbers 1,2,3 are con-
verted to an INTEGER number. The “D” character aborts the conversion be-
cause it cannot belong to an INTEGER number. The characters which follow
it are ignored.

The value of the INTEGER variable J% is NUL, i.e. the variable is not as-
signed. The “A” character aborts the processing of the <STRING expres-
sion>.

The value of the REAL variable R is -1.23. The “ -” character is recognized as
a sign for the REAL number. The digit 1, the “ .” character and the digits 2
and 3 are converted to a REAL number. The “D” character aborts the conver-
sion because it cannot belong to a REAL number. The “E” character is no
longer processed.

The value of the REAL variable Z is 1234. The “+” character is recognized as
a sign for the REAL number. The spaces which follow as well as the leading
zeros are ignored for purposes of value formation. The digits 1, 2, 3 and
4 are converted to a REAL number. The “T” character aborts the conversion
because it cannot belong to a REAL number. The remaining characters are
not further processed.

The REAL variable X is NUL, i.e. not assigned. The conversion is aborted
when the character “A” is recognized.

The value of the double-precision REAL variable D! is 1234567.234567.

Processing Character Strings5–8

1070 073 740-111 (02.11) GB

5.7 Removing leading and trailing spaces

TRIM$
TRIM$(<character string>)

TRIM$(<character string>,”L”)

TRIM$(<character string>,”R”)

When a character field range is assigned to a STRING variable or character
field, TRIM$() returns a string without preceding (³ index L) or trailing (³ in-
dex R) spaces.
The TRIM function without index masks out both preceding and concluding
spaces.
If chaining occurs within the TRIM command (e.g. TRIM $(A$+B$)), the re-
sult may be assigned only to a character field.

Example:
1 A$ = ” ABCDEF ”
2 B$ = TRIM$(A$,”L”)
3 C$ = TRIM$(A$,”R”)
4 D$ = TRIM$(A$)
5 PRN#(1,”>”,A$,”<”)
6 PRN#(1,”>”,B$,”<”)
7 PRN#(1,”>”,C$,”<”)
8 PRN#(1,”>”,D$,”<”)

Leads to the following lines in the file with the logical number 1 opened for write-access:
> ABCDEF <
>ABCDEF <
> ABCDEF<
>ABCDEF<

Processing Character Strings 5–9

1070 073 740-111 (02.11) GB

5.8 Programming examples

A STRING expression can be assigned to a STRING variable.

Example: Programming of STRING variables
 (without previous dimensioning)
1 A$=”ABCDE”
2 B$=CHR$(10)

During read access, parts of the STRING variables can be accessed by means of the
MID$ command:
1 A$=”ABCDEFGHIJKLMN”
2 B$=MID$(A$,2,1)
3 C$=MID$(A$,4,4)

The following lines of programming will lead to faults:
4 MID$(A$,1,4)=”ABCD”
4 A$=MID$(A$,1,3) + MID$(A$,4,1)
4 A$=B$ + A$

To continue processing a dimensioned character field, it is necessary to spe-
cifically access one or several connected characters. Only then will it be pos-
sible to assign a character field or a part of the character field to a STRING
variable or to another character field.

Read- and write-access to a part of a character field is performed with the
MID$ command. If only the character field name is entered, the entire char-
acter field will be addressed.

Reading a character field
If the <n>th character of the character field is to be accessed, proceed as
follows (n is less than or equal to the length of the character field and the
number of characters in the field):
Example: Reading a character field
1 DIM VWX$(13)
2 VWX$=”TEST TEST TES”
3 A$ = MID$(VWX$,12,1)
4 I%=12
5 A$=MID$(VWX$,I%,1)
The 12th character (”E”) of the VWX$ character field is assigned to the A$ string variable.

Writing of a character field
If the content of a STRING variable is to be assigned to the character field or
a part of the character field, the assignment must be converted.
Example: Partial writing of the character field
1 DIM XYZ$(15)
2 B$=”ABCDE”
3 MID$(XYZ$,1,5)=B$
4 MID$(XYZ$,6,5)=B$
The 1st through 10th character of the XYZ$ character field are assigned the content of the B$
STRING variable.

The following programming would lead to the error message CHARACTER
AREA NOT USED because the 1st to 5th characters of the character field are
not yet assigned:

1 DIM XYZ$(15)
2 B$=”ABCDE”
4 MID$(XYZ$,6,5)=B$

Processing Character Strings5–10

1070 073 740-111 (02.11) GB

Example: Partial writing of the character field
1 DIM XYZ$(100)
2 B$= ”ABCDE”
3 MID$(XYZ$,1,10)=B$
Content of the STRING variable B$: ”ABCDE”
Content of the field variable XYZ$: ”ABCDE”. The field variable has a length of 5. The remaining
95 characters are not assigned.

If the length of the STRING variable is smaller than the character field, the
character field XYZ$ is written only in the length of the STRING variable.
When allocating this character field to a STRING variable it is not the entire
character field (defined via DIM instruction) which is assigned, but only the
range which was written previously (³ length of the character field).

Example:
1 DIM XYZ$(100)
3 MID$(XYZ$,1,10)=”ABCDE”
4 MID$(XYZ$,6,3)=”T”

The content of the XYZ$ field variable after block 3 is:“ABCDE”.
The field variable has a length of 5. The remaining 95 characters are not as-
signed and are therefore not part of the length.
The content of the XYZ$ field variable after block 4 is:“ABCDET”.
The field variable now has a length of 6. The remaining 94 characters are not
assigned and are therefore not part of the length.

Example: Overwriting a character field
1 DIM XYZ$(100)
3 MID$(XYZ$,1,10)=”1234567890”
4 MID$(XYZ$,3,3)=”T”

The content of the XYZ$ field variable after block 3 is: “1234567890”.
The field variable has a length of 10.
The content of the XYZ$ field variable after block 4 is “12T4567890”.
The field variable has a length of 10. The character “3” is overwritten by
“T”. The characters “4” and “5”are retained.

Example: Prohibited access to the character field
1 DIM XYZ$(100)
3 MID$(XYZ$,1,6)=”ABCDEF”
5 MID$(XYZ$,9,5)=”TESTE”

The XYZ$ field variable after block 3 contains “ABCDEF”.
The field variable has a length of 6.
After block 5 an attempt is made to assign a constant to the 9th to 13th com-
ponents of the character field. This, however, results in the error message
CHARACTER AREA NOT USED because the 7th and 8th components are
not assigned.
If the whole character field is to be accessed, entering the variable name will
suffice.

Processing Character Strings 5–11

1070 073 740-111 (02.11) GB

5.8.1 Assigning a STRING expression to a character field

If the STRING expression contains fewer characters than the selected
range of the character field, the remaining range is regarded as not as-
signed. This remaining range is not included in the character field length.

Example:
1 DIM XYZ$(16)
2 XYZ$=” ”
Content of character field XYZ$: ” ”
Length of character field XYZ$: 1

If the length of the STRING expression exceeds the maximum length of the
character field during assignment, the surplus characters will be rejected.

Example:
1 DIM XYZ$(3)
2 XYZ$=”ABCDEF”
Content of character field XYZ$: ”ABC”
Length of character field XYZ$: 3 –––> maximum length

Example:
1 DIM XYZ$(16)
2 A$=”DAS ” (This)
3 B$=”IST EIN TEST” (is a test)
4 C$=”EIN EI” (an egg)

CONTENT OF THE CHARACTER FIELD
–––
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 |11 |12 |13 |14 |15 |16 |
–––
D	A	S													
–––															
 Length = 4 Range is not assigned

5 MID$(XYZ$,1,4)=A$

6 MID$(XYZ$,5,6)=B$

CONTENT OF CHARACTER FIELD
–––
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 |11 |12 |13 |14 |15 |16 |
–––
D	A	S		I	S	T		E	I						
–––															
 Length = 10 Range is not assigned

7 MID$(XYZ$,5,12)=B$

CONTENT OF CHARACTER FIELD
–––
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 |11 |12 |13 |14 |15 |16 |
–––
D	A	S		I	S	T		E	I	N		T	E	S	T
–––															
 Length = 16; Range is fully assigned

Processing Character Strings5–12

1070 073 740-111 (02.11) GB

8 MID$(XYZ$,9,8)=C$

CONTENT OF CHARACTER FIELD
–––
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 |11 |12 |13 |14 |15 |16 |
–––
D	A	S		I	S	T		E	I	N		E	I	S	T
–––															
 Length = 16; Range is fully assigned

9 XYZ$=MID$(XYZ$,1,4)

CONTENT OF CHARACTER FIELD
–––
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 |11 |12 |13 |14 |15 |16 |
–––
D	A	S													
–––															
 Length = 4 Range is not assigned

The character field was cut off.

5.8.2 Comparisons of STRING expressions

It is also possible to compare STRING expressions (STRING constants,
STRING variables and character fields) with one another.

Example:
1 DIM A$(10)
2 DIM B$(15)
3 A$=”ANTON”
4 B$= ”WILLY”
5 C$=”ABCDE”
6 D$=”VWXYZ”
7 IF A$ < B$ THEN ...
8 IF MID$(A$,2,3) = MID$(B$,1,3) THEN ...
9 Z?=A$ <> ”TEST”
10 IF ”A” <= ”C” THEN ...
11 IF C$ > D$ THEN ...
12 IF A$ = C$ THEN ...
13 IF ”TE” < MID$(D$,2,2) THEN ...

The contents of the STRING expressions are checked for alphabetical order
in accordance with the ASCII code of the individual characters.

Processing Character Strings 5–13

1070 073 740-111 (02.11) GB

5.8.3 Chaining STRING expressions

Several STRING expressions can be chained with the use of the “+” plus
character. The result must be assigned to a character field. The nesting
depth for the chaining of STRING expressions is 3. If this depth is exceeded,
the following fault message is returned: RUNTIME ERROR 2153 - NEST-
ING TOO DEEP

Example: Chaining also within CPL instructions
1 DIM A$(3)
2 DIM B$(3)
3 A$ = ”ABC”
4 B$ = ”DEF”
5 C$ = ”GH”
6 D$ = ”JKL”
7 OPENW(1,”P2”,130,”CHAINING TEST”,10)
8 PRN#(1,A$+B$)
9 PRN#(1,A$+C$)
10 PRN#(1,C$+D$)
11 PRN#(1,A$+C$+”TEST”)
12 PRN#(1,”UVW”+”XYZ”)
13 CLOSE(1)

Content of P2 file:
ABCDEF <LF>
ABCGH <LF>
GHJKL <LF>
ABCGHTEST <LF>
UVWXYZ <LF><ETX><LF>

Example: Chaining texts via STRING expressions
10 DIM A$(100)
20 DIM B$(100)
30 DIM C$(10)
40 DIM D$(20)
51 DIM E$(30)
52 DIM F$(30)
53 DIM G$(30)
54 DIM H$(30)
55 DIM I$(30)
60 A$=”THIS ”
70 B$=”IS A TEST”
80 MID$(C$,1,6)=A$ + B$
90 MID$(D$,1,10)=MID$(A$,1,1) + MID$(B$,1,2)
92 E$=A$ + MID$(B$,1)
93 X$=”ABC”
94 Y$=”DE”
95 F$=X$ + Y$
96 G$=X$ + A$
97 H$=X$ + A$ + ”TEST”
98 I$=”TES” + ”T1”

Content of A$: ”THIS ” Length 4
Content of B$: ”IS A TEST” Length 9
Content of C$: ”THIS I” Length 6
Content of D$: ”TIS” Length 3
Content of E$: ”THIS IS A TEST” Length 14
Content of F$: ”ABCDE” Length 5
Content of G$: ”ABCTHIS ” Length 8
Content of H$: ”ABCTHIS TEST” Length 12
Content of I$: ”TEST1” Length 5

The following lines of code will lead to faults:
1 DIM A$(3):A$ = ”ABC”:B$ = ”CD”:C$ = ”EF”
2 D$ = A$ + B$
3 D$ = B$ + C$
4 D$ = A$ + B$ + ”TEST”
5 D$ = ”TEST” + ”TEST1”

Inadmissible assignment to an
non-dimensioned STRING variable

Processing Character Strings5–14

1070 073 740-111 (02.11) GB

Example: STR$
1 DIM A$(50) : DIM B$(21)
2 A$ = STR$(”A$ = ##.###”,(37/3)) : B$ = STR$(2.5)

Content of character field A$: ”A$ = 12.333” ; character field B$: ” 2.500”

Example: VAL
1 DIM FOLGE$(20) : FOLGE$ = ”X VALUE –0001.234 MM”
2 XR = VAL(MID$(FOLGE$,7)) : Z% = VAL(MID$(FOLGE$,7,6))
3 Y% = VAL(MID$(FOLGE$,15,5)) : X% = VAL(MID$(FOLGE$,18))

Content of REAL variable XR: –1.234
Content of INTEGER variable Z%: –1
Content of INTEGER variable Y%: 34
Content of INTEGER variable X%: NUL

Example: LEN
1 DIM Z$(10)
2 Z$ = ”TEST”
3 S$ = ”TEST”
4 A% = LEN(”TEST”)
5 B% = LEN(Z$)
6 C% = LEN(S$)
7 D% = LEN(”TEST”+Z$+S$)

Content of INTEGER variable A% : 4
Content of INTEGER variable B% : 4
Content of INTEGER variable C% : 4
Content of INTEGER variable D% : 12

Example: MID$ command with read-access
10 DIM A$(4)
20 DIM B$(10)
30 DIM C$(10)
40 DIM D$(10)
50 DIM E$(10)
55 DIM F$(10)
60 A$ = ”ABCD”

70 B$ = MID$(A$,2,2) ––> B$ = ”BC”
80 C$ = MID$(A$,2,5) ––> C$ = ”BCD”
95 E$ = MID$(A$,5,1) ––> E$ = NUL
97 F$ = MID$(A$,2) ––> F$ = ”BCD”
98 F$ = MID$(F$,1,1) ––> F$ = ”B”

Example: MID$ command with write-access
10 DIM A$(4)
20 DIM B$(10)
30 DIM C$(10)
40 DIM D$(10)
60 A$ = ”ABCD”
70 B$ = ”1234567890”
80 C$ = ”EFGHIJKLMN”
85 D$ = A$ ––> D$ = ”ABCD”
90 MID$(D$,2,3) = B$ ––> D$ = ”A123”
95 MID$(D$,5,1) = C$ ––> D$ = ”A123E”
97 MID$(D$,4) = B$ ––> D$ = ”A121234567”

Example: TRIM$
1 DIM XYZ$(16)
2 XYZ$ = ”XVALUE = 0.123 ”
3 A$ = MID$(XYZ$,8)
4 B$ = TRIM$(MID$(XYZ$,8))
5 C$ = TRIM$(MID$(XYZ$,8),”L”)
6 D$ = TRIM$(MID$(XYZ$,8),”R”)

Content of STRING variable A$: ” 0.123 ”
Content of STRING variable B$: ”0.123”
Content of STRING variable C$: ”0.123 ”
Content of STRING variable D$: ” 0.123”

File Handling 6–1

1070 073 740-111 (02.11) GB

6 File Handling

Files are containers for data. Data can be read from files or stored in files
during a CPL program.
For instance, measured values can first be stored and later displayed or
printed out.

In the CNC data files are managed in the file system. They are stored in a file
system of hierarchical structure, and accessed by means of directories and
pathnames.

Data files can be managed in different operating modes.
For read- or write-access to files the corresponding file must first be opened
(see OPENW, OPENR commands); as soon as the access to the data is no
longer needed you can close the file again (see CLOSE command).

6.1 Filenames and file structures

6.1.1 File names

Filenames are governed by the following conventions:
D Maximum length 30 characters. No distinction is made between the file-

name and its possible extension, if one is used. All alphanumeric charac-
ters, plus the special characters ”.” and ”_” are permitted.
During the linking procedure, the CNC generates a file, the name of
which consists of the original filename plus 2 added characters. Accord-
ingly, filenames of part programs may not be more than 28 characters in
length.

. The ”$” symbol may be used only for data files that are internally gen-
erated. Names of files received from external sources (via operator in-
terface, or DNC) may not contain a ”$” character.

D A distinction is made between upper- and lower-case letters.
Examples: Filename variations
P123456789.PRG
P12_Data_Dial
P12_DATA_DIAL

D Filenames comprising ”.” and ”..” are prohibited as they are already used
internally.

D Filenames must be unique within the directory in which they are con-
tained.
However, files with the same name may exist in different directories.

File Handling6–2

1070 073 740-111 (02.11) GB

6.1.2 Sequential file structure

A sequential file contains a sequence of components (records) which may
have a variable length. If a particular record is sought in a sequential file,
the search for this record must be performed from the start of the file on-
wards. Direct access is not possible. If the length of a record is changed in a
sequential file, all subsequent records must be moved accordingly.

Unlike random files, sequential files contain records of varying length (max.
length 1024 characters). The end of a record is identified by an <LF> which
does not form part of the length. An <ETX><LF> which denotes an EOF
pointer is inserted after the last file record. An EOF pointer indicates the end
of the usable data (<ETX>) in a file.

6.1.3 Random file structure

A random file contains components (records) with a fixed, definable
length. Direct random access to any desired file component is therefore
possible. The classification of random files into records of fixed length facili-
tates direct access to a particular record. As is the case with sequential files,
data is stored in the form of ASCII characters. This enables both the usual
access with the editor as well as the reading-in and out of random files.

The advantage of the random file is that the required data can be accessed
more quickly. Furthermore, the data of a record can be processed and/or
amended without changing the structure of the rest of the file. Records which
are not completely filled with data are filled up with blanks up to the defined
length.

If an attempt is made to insert a STRING variable into a random file, whose
length is greater than the record length, the record will be filled up to the de-
fined length with the first characters of the STRING variable and the remain-
ing characters are discarded.

When reading the file, the file end is recognized by the EOF character.

The REWRITE and CLOSE instructions are used as with sequential files.

Sequential access to a random file is also possible.

File Handling 6–3

1070 073 740-111 (02.11) GB

6.2 Opening a file

In order to be able to access a file by means of file management commands
in a CPL program, this file must first be opened for the CPL program. This is
accomplished with the following commands:

OPENW, OPENR
The command used to open a file is dependent on the desired type of ac-
cess:
D write-access: OPENW
D read-access: OPENR

If the file to be opened does not yet exist, it is created during opening and the
predetermined memory area is reserved.

Files which have already been opened can also be opened for read-access
by means of the OPENR command. An open file cannot, however, be
opened again for writing to it.

To open a random file, an additional parameter is introduced which returns
the length of the records in the file in bytes (1 byte = length of a character). In
all other respects, the command structure corresponds to that of the se-
quential file.
After an OPENR command the file pointer is positioned on the first file re-
cord, which can then be read-accessed.
After an OPENW command the file pointer is positioned on the EOF pointer,
that is after the last record of the file.

The commands have the following structure:

OPENW(<n>,<PGM name>,<length>][,<PGM remark>][,<record length>])

OPENR(<n>,<PGM name>[,<record length>])

<n>: Logical number under which the file can be addressed.
Values from 1 to 9 can be selected. The logical number must be
programmed as an INTEGER expression. A logical number
may not be assigned for reading and writing a file simulta-
neously. Therefore, a maximum of nine different files may be
opened at the same time.
If the range of values is not adhered to, the following error mes-
sage appears: INVALID LOGICAL NUMBER.

<PGM name>: Must be programmed as a STRING expression. The string
must contain at least the filename (maximum of 30 characters
including the extension).
The specification of the filename including the complete pre-
fixed path is permitted.

<length>: Reserved length when creating the file in bytes.
A minimum length of 130 bytes is necessary since writing in a
file causes at least 1 record (= 130 characters) to be created
and stored. The following error message appears if this is not
observed: ILLEGAL FILE SIZE.

<PGM remark>: Only one STRING expression is permitted for the pro-
gramming of the program remark parameter.

<record length>: Number of bytes in a record; range of values: 1..1024. If
the range of values is not adhered to, the following error mes-
sage appears: INVALID COMPONENT LENGTH

File Handling6–4

1070 073 740-111 (02.11) GB

Examples:
50

40
50 OPENW(9,AS,1024,B1$)

50

OPENW(1, ”P500”,1024,”This is my best progam”

A$ = ”P500” : B1$=”This is my best program”

OPENW(7,”PData_Meas.DAT”,1024,”Store measurement data”)

When the file is opened for writing a check is made to ensure that the random
structure has been maintained.
If the structure has been damaged by the editor, the following message ap-
pears: INVALID COMPONENT LENGTH.

Example:
10 OPENW(2,”P200”,1024,10)
20 FOR I% = 1 TO 3
30 PRN#(2,”TEST”)
40 NEXT I%
50 CLOSE(2)

Result: ”P2”
TEST <LF>
TEST <LF>
TEST <LF>
<ETX><LF>

When the file is opened for reading, a check is made to ensure that the ran-
dom structure has been maintained. All components must have the identical
length specified in the OPENR command.

Example:
1 OPENW(2,”P200”,130,”TEST”,10)
2 PRN#(2,”ABC”)
3 CLOSE(2)
4 OPENR(1,”P2”,5)
5 CLOSE(1)

The program verifies whether the record length of file ”P2” is 5. However, the record length of
this file is 10.

Example:
P1:
N10 G1F10000X1000Y1000Z1000
1 A$=”01234567890123456789”
2 B$=”TEST”
N20 X0
M30

P2:
1 OPENW(1,”PMeas_PRG”,500,”RANDOM FILE”,10)
2 OPENR(2,”P1”)
3 DIM A$(30)
4 FOR I% = 1 TO 5
5 INP#(2,A$)
6 PRN#(1,A$)
7 NEXT
8 CLOSE(2)
9 CLOSE(1)

RESULT: PMeas_PRG:
N10 G1F100<LF>
1 A$=”0123<LF>
2 B$=”TEST<LF>
N20 X0 <LF>
M30 <LF>
<ETX><LF><LF>

If the structure was damaged by the editor, the following message appears:
INVALID COMPONENT LENGTH.

File Handling 6–5

1070 073 740-111 (02.11) GB

6.3 Inscribing a file

LJUST, NJUST
With LJUST (= Left JUSTify) a change-over to left-justified data output is
carried out. It is effective up to the end of the program run for all data outputs.
NJUST (No JUSTify) makes it possible to return prematurely to the for-
matted output.

A maximum of 7 places (4 pre-decimal and three post-decimal places) are
available for the REAL data type and a maximum of 9 places are available for
the INTEGER data type when data is output to files. Leading and trailing ze-
ros are suppressed. This also applies to left-justified output.

Since blanks between the NC address and the value are suppressed, with
LJUST NC programs which can be executed under the AUTOMATIC mode
can be created directly with CPL.

PRN#
PRN#(<n>,[<expression>][,<expression>][,<expression>][,...][;])

<n>: 1 to 9: Logical number of the file to be written into.
0: Issuance is diverted to monitor (as in the case of
message programming by MSG command). This setting can
also be used for the CPL dialog within the editor in order to
overwrite a selected block.
For relevant information see Chap. 7.2 page 7–2.

<expression>: Any alphanumeric characters (text in inverted commas),
format strings or variable, the content of which is to be saved/
displayed.

; Suppresses the automatic addition of a <CR><LF>.
If a record is overwritten via the PRN# command, the following
applies:
PRN# command with semicolon:
If the length of the new data to be written is shorter than the
length of the old data, the new data is inserted and the rest of
the old data is retained.
PRN# command without semicolon:
If the length of the new data to be written is shorter than the
length of the old data, the new data is inserted and the rest of
the old data is overwritten with blanks.

The type of variable is freely selectable. Indexed variables and character
fields can also be used. Double-precision REAL expressions can also be
programmed as any definable CPL expressions.

File Handling6–6

1070 073 740-111 (02.11) GB

If the result of an expression is to be output giving a format, at least one of the
expressions must be of the STRING type. The format can be specified by
using “#” and “.” in this format string. The results are entered at the place of
the format instruction specified with “#”. The first format instruction con-
tained in a STRING expression refers to the first subsequent expression
which may be output with a format entry. Boolean expressions cannot be for-
matted. The number of all programmed format entries must be less than or
equal to the number of expressions to be output. If this condition is not ful-
filled, the surplus “#” symbols are displayed. An expression is output in stan-
dard format if a format entry is not made.

If the output of an expression exceeds 1024 characters, the following error
message appears: BLOCK EXCEEDS 1024 BYTES.
If the result cannot be output in the specified format, the warning PRN FOR-
MAT INCORRECT is returned, and ”*” asterisk characters are output
instead of the faulty format.

If # characters are to be created in the file itself, no formattable expression
may follow after the string within the PRN# instruction.
The output of the # character can also be performed with CHR$(35).

A line feed can be initiated during output with CHR$(13), i.e. the further out-
put of the PRN# command is continued in the next line (i.e. in the next re-
cord).
Other control characters to be transferred with the CHR$() function, e.g.
when outputting via a serial interface.

Example: PRN# command with semicolon
1 OPENW(2,”PProg123.PRG”,200,35)
2 PRN#(2,”TEST1 FOR PRN COMMAND WITH SEMICOLON”)
3 PRN#(2,”TEST2 FOR PRN COMMAND WITH SEMICOLON”)
4 PRN#(2,”TEST3 FOR PRN COMMAND WITH SEMICOLON”)
6 SEEK(2,1)
7 PRN#(2,”OVERWRITE”;)
8 CLOSE(2)

RESULT in PProg123.PRG:
OVERWRITE PRN COMMAND WITH SEMICOLON<LF>
TEST2 FOR PRN COMMAND WITH SEMICOLON<LF>
TEST3 FOR PRN COMMAND WITH SEMICOLON<LF>
<ETX><LF>

Example: PRN# command without semicolon
1 OPENW(2,”P2”,1000,36)
1 REWRITE(2)
2 PRN#(2,”TEST1 FOR PRN COMMAND W/O SEMICOLON”)
3 PRN#(2,”TEST2 FOR PRN COMMAND W/O SEMICOLON”)
4 PRN#(2,”TEST3 FOR PRN COMMAND W/O SEMICOLON”)
6 SEEK(2,1)
7 PRN#(2,”OVERWRITE”)
8 CLOSE(2)

RESULT in P2:
OVERWRITE <LF>
TEST2 FOR PRN COMMAND W/O SEMICOLON<LF>
TEST3 FOR PRN COMMAND W/O SEMICOLON<LF>
<ETX><LF>

An <ETX><LF> is inserted after the last block of the file.

The following error message appears if the length of the block exceeds 1024
characters BLOCK EXCEEDS 1024 BYTES.

File Handling 6–7

1070 073 740-111 (02.11) GB

If a sequential file is written and the end of the file is reached, the file is copied
automatically and the reserved range increased by the occupied length inso-
far as sufficient memory is available in the part program memory.
Since this very quickly takes up a great deal of memory, it is advisable to re-
serve a sufficiently large file length when creating the file with OPENW.

Example:
1 OPENW(1,”P2”,300,”TEST PRN COMMAND”)
2 A$=”TEST”
3 B$=”FOR”
4 C$=”PRN COMMAND”
5 PRN#(1,A$)
6 PRN#(1,B$)
7 PRN#(1,C$)
8 PRN#(1,A$;)
9 PRN#(1,B$;)
10 PRN#(1,C$;)
11 CLOSE(1)

Result:
P2:
TEST<LF>
FOR<LF>
PRN COMMAND<LF>
TESTFORPRNCOMMAND<LF><ETX><LF>

Example:
10 DIM E$(50)
20 OPENW(1,”P2”,300,”TEST2”)
30 A% = 5000
40 R = 1.231
50 B! = 4/3
60 D$ = ”ABCDE”
70 E$ = ”CDEFGHI”
80 PRN#(1,”10”;)
90 PRN#(1,”#####”,”###.###”,”#.#####”,A%,R,B!,D$,E$)
95 CLOSE(1)

P2 :
10 5000 1.2311.33333ABCDECDEFGHI<LF>

 A% R B! D$ E$

REWRITE
If data is already present in the opened file, the new data is normally ap-
pended to the existing data when writing. An existing file can, however, be
overwritten by means of REWRITE without especially having to delete the
contents that are no longer required. When overwriting, the range reserved
in the OPENW command remains available in the part program memory.

REWRITE(<n>)

<n>: logical file number (range of values 1 ... 9)
To overwrite a file, it must be open.

File Handling6–8

1070 073 740-111 (02.11) GB

6.4 Reading a file

INP#
With the INP# instruction the ASCII data in an open file may be read in record
form and assigned to one or several variables. This command only has an
effect on files that were opened with ”OPENR(...)”.

INP#(<n>,<variable>[,<variable>][,...][;])

<n>: 1 to 9: Logical file number to be read from.
0: This setting can be used for the CPL dialog within the
editor.
For relevant information see Chap. 7.2 page 7–2.

<variable>: Variable under which the read data is stored.
; If a semicolon is programmed, the file pointer remains in the

record until the end of the record is reached. After that the next
record is switched to. Reading does not, however, automati-
cally take place there.
If no semicolon is programmed, the next record is switched to
automatically.

The type of variable is freely selectable. Indexed variables and character
fields can also be used. If a value other than TRUE or FALSE is assigned to a
logical variable, this variable is valued at NUL.

The characters “0” to “9”, leading signs ’–’, ’+’, leading zeros or spaces are
converted to INTEGER or REAL values if the variable type is INTEGER or
REAL (simple and double precision). If another character is assigned to an
INTEGER or REAL variable, the variable is assigned NUL. If a variable is
assigned NUL, the position within the file does not change.

If the value is assigned to an INTEGER or a REAL variable is too high, a cor-
responding error message appears:
INVALID INTEGER VALUE
INVALID FLOAT VALUE

Example: INP# instruction
P2:
ABC 123456789 ABC

P3:
1 OPENR(2,”P2”)
2 DIM C$(3)
3 DIM D$(3)
4 INP#(2,I%,J,L?,C$,K%,D$)
5 CLOSE(2)

RESULT:
I% = NUL
J = NUL
L? = NUL
C$ = ”ABC”
K% = 123456789
D$ = ”ABC”

File Handling 6–9

1070 073 740-111 (02.11) GB

Example: Reading a record from a file
1 OPENW(1,”P2”,200,”TEST”,22)
2 PRN#(1,”–12TEST1.23V12ABCD2.4A”)
3 PRN#(1,”–12TEST1.23V12ABCD2.4A”)
4 PRN#(1,”–12TEST1.23V12ABCD2.4A”)
5 CLOSE(1)
6 DIM A$(3)
7 DIM C$(5)
8 DIM D$(4)
9 DIM E$(4)
10 DIM G$(25)
11 DIM H$(7)
12 DIM I$(7)
13 DIM J$(25)
14 DIM R(1,2)
15 OPENR(2,”P2”,22)
16 INP#(2,B%,D$,R(1,1),MID$(E$,1,1),R(1,2),A$,C$)
17 INP#(2,G$)
18 INP#(2,H$;)
19 INP#(2,I$;)
20 INP#(2,J$)
21 CLOSE(2)

Result:
B% = –12
D$ = ”TEST” ,since max. length of character field = 4
R(1,1) = 1.230
E$ = ”V”
R(1,2) = 12.000
A$ = ”ABC” ,since max. length of character field = 3
C$ = ”D2.4A”
G$ = ”–12TEST1.23V12ABCD2.4A”
H$ = ”–12TEST” ,since max. length of character field = 7
I$ = ”1.23V12” ,since max. length of character field = 7
J$ = ”ABCD2.4A”

File Handling6–10

1070 073 740-111 (02.11) GB

6.5 End-of-file recognition

EOF
The EOF function allows a query to be made as to whether the end of a file
(EOF . end of file) has been reached.
The EOF function returns the logical value TRUE if the end of the file is
reached during read-access. Otherwise FALSE is returned.

Example:
.

10
11
12
13

14

15
M30
.

OPENR(1,”P”,444) : I%=0
WHILE NOT (EOF(1))DO
INP#(1,A$)
I%=I%+1

END

CLOSE(1)

9 DIM A$(10)

6.6 Closing a file

CLOSE
Closes a file.
All in all max. 9 files can be open at the same time. If, when 9 files are open,
access to a further file is necessary, you must first close a file.
Open files should therefore as a rule be closed immediately upon completion
of read or write operations.

CLOSE(<n>)

<n>: 1 to 9: Logical number of the file to be closed.
Example:
.
90
100
110
120
130
140
150
160
170
180
.

DIM A$(35)
XPOS = MPOS(1)
YPOS = MPOS(2)

REWRITE(1)

CLOSE(1)
OPENR(1,”P5”)
INP#(1,A$)
CLOSE(1)

“AXISPOS”)

 “X AXIS”,XPOS,”YPOS,”Y AXIS”,YPOS)

OPENW(1,”P5”,500,

PRN#(PRN#(1,

In the above example the current positions of the X and Y axis are trans-
ferred into variables (lines 90 to 110). File 1 is then opened and stored as part
program P5 (line 120).
The file is subsequently written or overwritten and then closed (lines 140 to
150). The file is then opened for reading and assigned the contents of the A$
variable. It is closed again after read-access (lines 160 to 180).

File Handling 6–11

1070 073 740-111 (02.11) GB

6.7 Reading file pointer position

FILEPOS
The FILEPOS() function returns the record number of the current record of a
random file. This record can be accessed afterwards. It is also possible to
determine the record offset within the current record of a random file or the
offset from the current byte that can be accessed for a sequential file. The file
can therefore be a sequential or a random file.

Offset refers to the number of bytes from the top of the file up to the current
byte in a file. The record offset specifies the byte at which positioning takes
place within a record. The record offset begins with the value 1 (= 1st byte in a
record) and can have the maximum value of the record length + 1 (last byte
in this record is <LF>). The value 1 is returned if you are on the EOF pointer.

FILEPOS(<n>[,<mode>])

<n>: 1 to 9: Logical number of the file in which the position of the
file pointer is to be read.
If the range of values is not adhered to, the following error mes-
sage appears: INVALID FILE NUMBER

<mode>: With random files: Range of values 1 to 3
<mode> = 1:
Supplies the offset to the current byte which can be read or writ-
ten.
<mode> = 2:
Supplies the record number of the current record which can be
read or written. The result is as follows if you are on the EOF
pointer: number of records + 1.
<mode> = 3:
This command supplies the record offset within the current re-
cord which can be read or written. The record offset begins with
the value 1 (. 1st byte in this record) and can have the maxi-
mum value of the record length + 1 (. last byte in this record is
<LF>).
The value 1 is returned if you are on the EOF pointer and read-
ing from the file is not permitted.
<mode> not programmed:
Supplies the record number of the current record which can be
read or written. The result is as follows if you are on the EOF
pointer: number of records + 1.

With sequential files: Range of values 1
<mode> = 1 or not programmed:
Supplies the offset to the current byte which can be read or writ-
ten.

If the range of values of <mode> is not adhered to, the following
error message appears: INVALID PARAMETER.

File Handling6–12

1070 073 740-111 (02.11) GB

Example: FILEPOS and sequential file
1 OPENW(1,”P2”,200,”TEST”)
2 FOR I%= 1 TO 10
3 PRN#(1,”TEST FOR FILEPOS”)
4 NEXT
5 CLOSE(1)
6 OPENR(1,”P2”)
7 SEEK(1,3)
8 POS% = FILEPOS(1)
9 POS1% = FILEPOS(1,1)
11 SEEK(1,0) : REM POSITIONED ON END OF FILE
12 POS2% = FILEPOS(1)
13 POS3% = FILEPOS(1,1)
14 CLOSE(1)

Result:
POS% = 3 –> byte number
POS1% = 3 –> byte number
POS2% = 171 –> byte number
POS3% = 171 –> byte number

Example: FILEPOS and random file
1 OPENW(1,”P2”,200,”TEST”,1024)
2 FOR I%= 1 TO 10
3 PRN#(1,”TEST FOR FILEPOS”)
4 NEXT
5 SEEK(1,3,2)
6 POS% = FILEPOS(1)
7 POS1% = FILEPOS(1,1)
8 POS2% = FILEPOS(1,2)
9 POS3% = FILEPOS(1,3)
10 PRN#(1,”OVERWRITING OF 3RD RECORD FROM BYTE 2 WITH THIS TEXT”)
11 SEEK(1,0) : REM POSITIONED ON END OF FILE
6 POS% = FILEPOS(1)
7 POS1% = FILEPOS(1,1)
8 POS2% = FILEPOS(1,2)
9 POS3% = FILEPOS(1,3)
11 CLOSE(1)
Result:
POS% = 3 −> record number of record of current position
POS1% = 258 −> byte number
POS2% = 3 −> record number of record of current position
POS3% = 2 −> position within 3rd record
POS% = 11 −> record number of record of current position
POS1% = 1281 −> byte number
POS2% = 11 −> record number of record of current position
POS3% = 1 −> position within 3rd record

File Handling 6–13

1070 073 740-111 (02.11) GB

6.8 Setting file pointer

SEEK
Positions the file pointer at a certain position of an open file. The file may be a
sequential or a random file.
With sequential files, the file must be opened with the command
”OPENR(..)”. For random files, the command ”OPENW(..)” is also permis-
sible.

SEEK(<n>,<k>[,<o>])

<n>: Logical number of the file in which the file pointer is to be posi-
tioned.
Range of values: 1 to 9
If the range of values is not adhered to, the following error mes-
sage appears: INVALID FILE NUMBER.

<k>: Record number of a random file or byte number of a sequential file.
The file pointer is positioned on <k>.
Range of values: 0 to last existing record or

0 to last existing byte.
The record with the EOF pointer is taken to be the last existing re-
cord. At 0, positioning is on the EOF pointer.
The INVALID COMPONENT error message appears if the range
of values is not adhered to or if the specified record does not exist.

<o>: Record offset. Specifies at which byte within a record positioning
should take place.
Range of values: 1 ... Record length + 1.
If the record offset is not programmed for random files, positioning
of the file pointer is at the 1st byte of record <k> .
If the range of values is not adhered to, the INVALID PARAMETER
error message appears.

This parameter is only permitted for random files. The INVALID
PARAMETER error message appears if this parameter is pro-
grammed although it is a sequential file (which has been opened
for reading).

Example: SEEK and sequential file
1DIM A$(1):LJUST:OPENW(1,”P271”,130,”TEST”):FOR I%=1 TO 10:
 PRN#(1,”!/–!/–!/–!/–!/–!/–!/–!/–!/–!/–”):NEXT:
 CLOSE(1):OPENR(2,”P271”):FOR I%=1 TO FILESIZE(2,2)–28:
 IF NOT (EOF(2)) THEN SEEK(2,I%):INP#(2,A$) ENDIF:
 IF (EOF(2)) THEN PRN#(0,”###”,I%,”. BYTE: <EOF>”):
 ELSE PRN#(0,”###”,I%,”. BYTE: <”,A$,”>”) ENDIF:
 NEXT I%:CLOSE(2)
M30

Example: SEEK and random file
1 OPENW(1,27272,200,”TEST”,1024):LJUST
2 FOR I%= 1 TO 10
3 PRN#(1,I%,”. Record”)
4 NEXT
5 SEEK(1,3,4) : REM, positioned at the 4th byte in the 3rd record
6 PRN#(1,”OVERWRITE THE 3RD RECORD FROM BYTE 4 WITH THIS TEXT”)
7 SEEK(1,11):PRN#(1,”11th record”)
8 SEEK(1,11,5):PRN#(1,”@@”)
9 SEEK(1,0):PRN#(1,”<EOF>”)
10 SEEK(1,0,1):PRN#(1,”new <EOF>”)
11 CLOSE(1)

File Handling6–14

1070 073 740-111 (02.11) GB

6.9 Determining file size

FILESIZE
Supplies the size of a file, or the limit up to which a file has already been writ-
ten. The file may be a sequential or a random file. This command only has an
effect on files that were opened with ”OPENR(...)”.

FILESIZE(<n>[,<k>])

<n>: 1 to 9: Logical number of the file whose size is to be deter-
mined.
If the range of values is not adhered to, the INVALID FILE NUM-
BER error message appears.

<k>: With random files: Range of values 1 to 4
With sequential files: Range of values 1 to 2

<k> = 1:
Total memory area size (in bytes) used by a file.

<k> = 2:
Memory area size (in bytes) used from the start of the data area up
to the EOF pointer (excluding the size of the EOF pointer).

<k> = 3:
Maximum number of records in a file. This result depends on the
record length with which the file was opened.

<k> = 4:
Number of records from the start of the file up to the EOF pointer.
This result depends on the record length with which the file was
opened.

<k> not programmed:
Like <k> = 1.

If the ranges of values for <k> is not adhered to, the INVALID PA-
RAMETER error message appears.

Example: FILESIZE and sequential file
1 OPENW(1,2,1000)
2 FOR I%= 1 TO 20
3 PRN#(1,”TEST FILESIZE”)
4 NEXT
5 CLOSE(1)
6 OPENR(2,2)
7 A%=FILESIZE(2)
9 B%=FILESIZE(2,1)
10 C%=FILESIZE(2,2)
11 CLOSE(2)

The INTEGER variable A% has the value: 302
The INTEGER variable B% has the value: 302
The INTEGER variable C% has the value: 300

File Handling 6–15

1070 073 740-111 (02.11) GB

Example: FILESIZE and random file
1 OPENW(1,”P2”,1000,10)
2 FOR I%= 1 TO 20
3 PRN#(1,”TEST FILESIZE”)
4 NEXT
5 CLOSE(1)
6 OPENR(2,2,10)
7 A%=FILESIZE(2)
9 B%=FILESIZE(2,1)
10 C%=FILESIZE(2,2)
10 D=FILESIZE(2,3)
10 E%=FILESIZE(2,4)
11 CLOSE(2)

The INTEGER variable A% has the value: 222
The INTEGER variable B% has the value: 222
The INTEGER variable C% has the value: 220
The INTEGER variable D% has the value: 20
The INTEGER variable E% has the value: 20

6.10 Erasing a file

ERASE
Erases files in the current directory.

ERASE(<PGM identifier>)

<PGM identifier> STRING expression; max. 30 characters.
Otherwise the INVALID FILE NAME error message ap-
pears.

The following values can be returned if the ERASE function is assigned to an
INTEGER variable or if it is used in loops or queries (WHILE, IF etc.):
0: File erased.
1: File not erased because it does not exist.
2: File not erased because this file is erase-protected.
3: File not erased because this file is active.

If a file cannot be erased a warning to this effect is issued and execution of
the program continues.

Examples:
10 IF ERASE(”P1”) <> 0 THEN ...

10 I% = ERASE(”P1”)

10 WHILE ERASE(”P1”) <> 0 DO ...

Example:
10 OPENW(1,”P2”,200)
11 OPENW(2,”P3”,200)
20 PRN#(1,”TEST1 FOR ERASE”)
21 PRN#(2,”TEST2 FOR ERASE”)
31 CLOSE(1)
32 CLOSE(2)
40 ERASE(”P2”)
43 A$=”P3”
44 ERASE(A$)

File Handling6–16

1070 073 740-111 (02.11) GB

6.11 Determine file access rights

FILEACCESS
With FILEACCESS of the CPL program it is possible to tell whether a file
exists and which access rights (privileges) it has.

FILEACCESS(<file name>)

<file name> File name with a complete path as a string expression.
If the <file name> contains no path, the file is searched
for in the current directory. The CPL function supplies the
return value as an integer value:

–1 : file does not exist
0 : file without access rights
otherwise : binary coded access rights:

Bit1: execution possible (X)
Bit2: writing allowed (W)
Bit3: reading allowed (R)
Bit4: file is a directory (D)
Bit5: file is an active program (A)

An active program is a file which
D is executed as a program
D is executed as a sub-program within a program
D has been opened by a CPL command
on a channel.

If the access rights of a zero shift or tool compensation table which are be-
ing used in a running part program are queried by the CPL FILEACCESS
then the Bit5 is not set.

Example:
10 I% = FILEACCESS (”/usrfep/test.cnc”)

File Handling 6–17

1070 073 740-111 (02.11) GB

6.12 Determine file date

FILEDATE
In the CPL program, the date of a file can be determined with FILEDATE.
An access error does not generate a part program error, but instead the
function supplies an empty string.

FILEDATE(<file name>[,<mode>])

<file name>: File name with the complete path as a string expression.
If no path is entered, the file is searched for in the current
directory. The CPL function supplies a string expression as
a return value.

<mode>: Integer variable for the function mode (default = 1):
1 = Date of the file, format: dd.mm.yy
2 = Time of the file, format: hh.mm.ss

Example:
10 DIM DATE$(10)
20 DATE$ = FILEDATE(”/usr/user/Test.txt”,1)
30 IF LEN(DATE$)>0 THEN
40 PRN#(0,”File date: “,DATE$)
50 ENDIF

File Handling6–18

1070 073 740-111 (02.11) GB

Notes:

Dialog Programming 7–1

1070 073 740-111 (02.11) GB

7 Dialog Programming

Dialog programming enables operator-prompted data in- and output.

Newly created CPL graphic programs make full use of the screen. The SFK
command always produces 8 softkeys.
Old CPL graphic programs of the CC 200/220 series only use the corre-
sponding pixel range of the CC 220 panel. The SFK command always pro-
duces 5 softkeys.

An identifier in the old CPL graphic programs distinguishes them from new
ones. In order to enable old graphic programs to produce correct graphic
output in the control unit, they have to contain the following DIN remark as
first instruction:

N10 (TYP2)
....

7.1 Calling CPL dialog via softkeys

In the basic level of the ”manual”, ”automatic”, ”manage” and ”diagnostics”
group operating modes or in the editor one CPL dialog program can be
called via the CPL DIALOG softkey.

All CPL dialog programs run in the channel defined by the MACODA param-
eter 3080 00005.
If you change the entry in parameter 3080 00005, you must restart the oper-
ator interface of the control unit. Only then will the change become effective.

In standard mode, the control unit does not display the CPL DIALOG soft-
keys.
To have them displayed, proceed as follows:

1. Write the necessary CPL dialog programs.
2. Save them under the following names:

”cpldlg01.dlg” (CPL dialog program for the ”Manual” GOM)
”cpldlg02.dlg” (CPL dialog program for the ”Automatic” GOM)
”cpldlg03.dlg” (CPL dialog program for the ”Manage” GOM)
”cpldlg04.dlg” (CPL dialog program for the ”Diagnostics” GOM)
”cpldlg05.dlg” (CPL dialog program for the editor).
The programs must be stored in
– the root directory or
– the user FEPROM or
– FEPROM
The control unit will search these directories in the stated sequence.

3. Restart the operator interface of the Typ3 osa.

. The MACODA parameter 6001 00020 controls the behavior of the oper-
ator interface during actuation of the softkey ”CPL-dialog” if a CPL
program is already active.

Dialog Programming7–2

1070 073 740-111 (02.11) GB

7.2 CPL dialog in the editor

After actuating the CPL-DIALOG softkey in the editor the NC block currently
selected in the editor is checked for a sub-program call.
To do this the control unit searches in the machine parameters 3080 00006
and 3080 00007 for a corresponding link between sub-program call (G-, aux-
iliary function or sub-program name) and CPL dialog program (program
name).

If and when the control unit finds a link the NC block is forwarded to the corre-
sponding CPL dialog program. If no link is present the NC block is forwarded
to the CPL dialog program ”cpldlg05.dlg” (see Chap. 7.1).

Now the NC block selected in the editor can be read or even overwritten in
the CPL dialog program. For this use the CPL commands INP# and PRN#.

INP#
Transfers call parameters from the selected NC block to the CPL dialog pro-
gram.
In this way parameter values of the CPL dialog program can be occupied
beforehand and displayed without having to input them in the dialog again.

INP#(0,P1[,P2][,P3][,...])

Px: Numeric or binary variable(s) into which the call parameters
from the selected NC block are entered. A variable type is la-
belled by adding the corresponding characters to the variable
name (INTEGER: %, REAL: no character, BOOLEAN: ?,
DOUBLE: !).

PRN#
Overwrites the selected NC block with data defined here in the CPL dialog
program.
This behavior can be used as a programming aid for sub-program calls with
numerous transfer parameters.

PRN#(0,[<expression>][,<expression>][,<expression>][,...])

<expression>: Definable alphanumeric characters (text in quotation
marks), format strings or variable(s). The specified expres-
sions overwrite the selected NC block.

Dialog Programming 7–3

1070 073 740-111 (02.11) GB

7.3 Data input and output

CSF
Deletes the currently depicted softkeys.

DSP
Outputs data in a preset format at a specified line and column position on the
graphics screen.

DSP(<line>,<column>,<expression1>,<expression2>,...,
 <expressionN>)

<line>,<column>: Start of output. Constants or variables may be of the
REAL or INTEGER type. If <line> and <column> are of
the REAL type, they are rounded off to become IN-
TEGERs.
<line> may take on values from 1 to 46,
<column> values from 1 to 79.
An invalid starting position will lead to the ”Invalid line or
column number in CPL command” error message.

<expression1>...<expressionN>: Any CPL expressions. If the result of an
expression is to be output in formatted form, at least one
of the expressions has to be a character string.
Using ”#” and ”.” in this character string it is possible to
specify the format, with ”#” representing individual digits
and “.” separating pre- and post-decimal places.

The first format instruction contained in a character string refers to the first
expression thereafter to be output in a formatted manner. Expressions of the
BOOLEAN or STRING type cannot be output in format. The number of all
programmed formatting specifications must be smaller than or equal to the
number of expressions to be output. If this condition is not fulfilled, surplus
“#” will be displayed.

If no format is specified for an expression, it will be output in the default for-
mat. The default output for the REAL data type has a maximum of 7 digits,
with leading zeros being suppressed. The max. output for the INTEGER
data type is 9 digits. Leading zeros are likewise suppressed.

If the right screen boundary is exceeded during output of an expression, the
output will be cut off at the screen boundary without an error message.
In case of string expressions with more than 77 characters the error mes-
sage ”maximum string length exceeded” is issued.

If the result cannot be depicted in the specified format, the “format not per-
mitted” error message will be displayed.

Dialog Programming7–4

1070 073 740-111 (02.11) GB

Line and column grid of the screen

1st line

41st line

46th line
Softkey range

CPL dialog

1st column 79th column

42nd line

Example:
.
10
20
30

FOR I%=1 TO 10

40 NEXT I%
M30
.

LIN%=4 : COL%=1

DSP(LIN%+I%,COL%,”###.### IS ROOT OF ##”,SQRT(I%),I%)

Screen output:
1.000
1.414
1.732
.
.
3.13.162

IS ROOT OF 1
IS ROOT OF 2
IS ROOT OF 3

IS ROOT OF 10

Example:
.
10
20
.

A=25 : B=SQRT(A) : Z=5 : S=10
DSP(Z,S,”A= ”,A,” B= ”,B,” C= ”,A+B)

Screen output:
A= 25.000 B= 5.000 C= 30.000

Example:
.
10
15
.

A=25 : B=SQRT(A) : Z%=5 : S%=10
FA$=” A= ###.#” : FB$=” B= #.#” : FC$=” C= ##”

20
.

DSP(Z%,S%,FA$,FB$,FC$,A,B,B+A)

Screen output:
A= 25.0 B=5.0 C=30

Example:
.

.

1 1.5:Y=2.5:B?=TRUE:I%=200:T1$=” MEAS.PROBE=”:T2$=” NO.=”
2 DSP(5”XPOS ###.### YPOS ###.###,T1$,B?,X,Y,T2$,I$)

Screen output:
XPOS 1.500 YPOS 2.500 MEAS.PROBE=TRUE NO.=200

Dialog Programming 7–5

1070 073 740-111 (02.11) GB

DLG, ENDDLG
Some dialog instructions may be contained in the program within a range
which is enclosed by DLG and ENDDLG. This range offers convenient data
input options (cf. PRN and INP below).

Example:
.
30 DLG

.

.

.
90
.
.

ENDDLG

Start of dialog

Dialog and other CPL commands

End of dialog

INKEY
Returns as a function value the number of a depressed key which was not
yet processed. This gives the user the opportunity to respond to the depres-
sion of a certain key.
If the program flow encounters the INKEY function, the execution of the pro-
gram will not be interrupted.
The INKEY function can provide values between 0 and 255. The value 0
means that no key was pressed. The values from 1-127 correspond to the
decimal values of the ASCII characters. The keys of the operating panel
have separate numbers assigned. For the ASCII table and the key codes,
please refer to the Annex.

The command is only effective when the CPL dialog is in the foreground.

Example:
.
1 NEW%=0 : OLD%=0
2 CLS
3 DSP(10,10,“Press any key! ABORT WITH ENTER”)
4 WHILE NEW%<>13 DO
5 NEW%=INKEY
6 IF (OLD%<>NEW%) AND (NEW%>0) THEN
7 DSP(12,10,“KEY NUMBER:###”,NEW%) : OLD%=NEW%
8 ENDIF
9 END
10 CLG
.

Dialog Programming7–6

1070 073 740-111 (02.11) GB

Example:

IF ((JK%>0) AND (JK%<9)) THEN COL(O,O,7)

DSP(41+I%,(JZ%–1)*8+JZ%+1,” ”)

DSP(41,4,P1$) : DSP(41,13,P2$) : DSP(41,22,P3$)
DSP(41,31,P4$) : DSP(41,40,P5$) : DSP(41,49,P6$) : DSP(41,58,P7$) : DSP(41,67,P8$)

.
1
2
3
M30
.
UNTPR:
1
2
3
4
5
6
7

8
9
1
11
12
13
14
15
16
17

21
22
23
24
25
26
27
28
29
30

34
35
36
M30
.

A$ = ”SOFT1” : B$ = ”SOFT2” : C$ = ”SOFT3”

Z%=0 : COL(0,7,0)

REPEAT
 REPEAT
 K%=INKEY
 UNTIL ((K%=141) OR (K%=142) OR (K%=143) OR (K%=144) OR (K%=145)
 OR (K%=146) OR (K%=147) OR (K%=148) OR (K%=139))
JZ%=Z%–140 : JK%=K%–140
IF ((JZ%>0) AND (JZ%<9)) THEN COL(0,7,0)
 FOR I%=0 to 2

 NEXT I%
 IF Z%=141 THEN DSP(41,4,P1$) ENDIF
 IF Z%=142 THEN DSP(41,13,P2$) ENDIF
 IF Z%=143 THEN DSP(41,22,P3$) ENDIF
 IF Z%=144 THEN DSP(41,31,P4$) ENDIF
 IF Z%=145 THEN DSP(41,40,P5$) ENDIF

ENDIF

 FOR I%=0 TO 2

 NEXT I%
 IF K%=141 THEN DSP(41,4,P1$) ENDIF
 IF K%=142 THEN DSP(41,13,P2$) ENDIF
 IF K%=143 THEN DSP(41,22,P3$) ENDIF
 IF K%=144 THEN DSP(41,31,P4$) ENDIF
 IF K%=145 THEN DSP(41,40,P5$) ENDIF

ENDIF
Z%=K%
UNTIL K%=139 : CLG

D$ = ”SOFT4” : B$ = ”SOFT5” : F$ = ”SOFT6” : G$ = ”SOFT7” : H$ = ”SOFT8”
CALL UNTPR [A$,B$,C$,D$,E$]

18
19
20

 IF Z%=146 THEN DSP(41,49,P6$) ENDIF
 IF Z%=147 THEN DSP(41,58,P7$) ENDIF
 IF Z%=148 THEN DSP(41,67,P8$) ENDIF

DSP(41+I%,(JZ%–1)*8+JZ%+1,” ”)

31
32
33

 IF K%=146 THEN DSP(41,49,P6$) ENDIF
 IF K%=147 THEN DSP(41,58,P7$) ENDIF
 IF K%=148 THEN DSP(41,67,P8$) ENDIF

10

Example:
.
10
20
30
40

M=10
REPEAT
 KEY%=INKEY
 LIN(250,10,M,M)
 M=M+1

 UNTIL ((KEY%=66) OR (M>300))
45
50
60
.

CLG

Example:
.
10
20
30
40

M=2
WHILE ((INKEY<>66) AND (M<150)) DO
 CIR(250,160,M) : M=M+1
END
CLG50

60
.

Dialog Programming 7–7

1070 073 740-111 (02.11) GB

INP
Assigns a value to a REAL or INTEGER variable in the dialog.

INP(<variable name>)

. If an INP instruction is to be executed the CPL processor must have
read a corresponding PRN instruction with the same variable within
the DLG-ENDDLG range before.

An attempt to use INP to assign a value to a STRING variable will be ignored
but the corresponding PRN instruction will be executed.

The dialog text will be displayed on the screen with the reading of the first
INP instruction.
An INP instruction can be skipped using the cursor keys without a value as-
signment being made. An existing value can be deleted using the delete key.

The validity of the format is checked during value input. It is not possible to
enter a value exceeding the valid format length. Upon completion of the input
via ENTER, an automatic jump to the next input instruction is made.

Example:
.
30
40
50
60
70
80
.

DLG
PRN(8,4,”MAX.
PRN(10,4,”MAX.
INP
ENDDLG
PRN# 0,”Q900[”,WI,”,”,DP,”]”)

CUTTING WIDTH: ###.### MM”,WI)
CUTTING DEPTH: ###.### MM”,DP)

(WI):INP(DP)

PRN
Issues a text or displays the content of a variable in the specified format with
text preceding or following (e.g. to explain input and display the unit of mea-
surement).

PRN(<line>,<column>,”<text>")
or
PRN(<line>,<column>,”[<text>]<format>[<text>]",<variable name>)

<line>: Constant in the value range from 1 to 46 (cf. page 7–4)
<column>: Constant in the value range from 1 to 79 (cf. page 7–4)
<text>: Any alphanumeric text (“#” for format information only)
<format>: Defined input format of the variable; ”#” represents

placeholders for digits, ”.” separates pre- from post-dec-
imal places.

<variable name>: If the variable has a value assigned, the value will be dis-
played in the defined format. If the variable is not yet as-
signed, the specified format will be displayed.

Dialog Programming7–8

1070 073 740-111 (02.11) GB

SFK
Depicts a softkey bar with 8 softkeys and awaits the actuation of a softkey.
After actuation of a softkey its number or its text is transferred to a variable.

The programmed softkey bar is displayed until the next SFK command, CLG
command or until the end of the program.

SFK(<variable>,[<text1>],[<text2>],[<text3>],[<text4>],
[<text5>],[<text6>],[<text7>],[<text8>])

<variable>: If the variable is of the INTEGER type, the number of
the softkey being depressed will be transferred to it; if
it is of the STRING type, it will receive the softkey’s
text.
Pressing the LEVEL RETURN key exits the SFK
command and the value of the parameter <variable>
remains unchanged.

<text1>...<text8>: STRING expressions for which 3 lines of text con-
sisting of 9 characters each are available. Within the
STRING expressions line breaks within the softkey’s
text are denoted by a ”&” sign.

Example:
.
1
 .
 .
 .
10
11
12
13
14
15
 .
30
 .
40
 .

.SOFTKEY1

.SOFTKEY2

.ACTION

.END

SFK (KEY%,,”ABORT”,,”ACTION”,,,,)
KEY%=0

IF KEY%=2 THEN GOTO .END ENDIF
IF KEY%=4 THEN GOTO .ACTION ENDIF
IF KEY%=0 THEN GOTO .SOFTKEY1 ELSE GOTO .SOFTKEY2 ENDIF

Dialog Programming 7–9

1070 073 740-111 (02.11) GB

TFO
Modifies the font in the CPL dialog.

. The font of the dialog text displayed in the INP command cannot be
modified.

TFO(,<size>,<cut>,<orientation>)

: 0: Lucida console (default) Sample text
1: Arial
2: Verdana
3: Book Antiqua
4: Times New Roman
5: Bosch
6: Impact
7: Haettenschweiler
8: Comic Sans MS
9: Brush Script MT
10:Wingdings

<size>: 0: font height = 9 pixels, font width = 8 pixels (default)
(only for Lucida console font setting)

1 to 500: font height in pixels; font width is
determined automatically.

Example: Point sizes: 6, 8, 10, 12, 16, 20, 36
If the font width is to be set individually for a certain font
height calculate the input value for <size> according to
the following formula:
<size> = font height + (font width * 1000)
with: font height: 1 to 500

font width: 1 to 500
<cut>: 0: normal (default)

1: boldface
2: italics
3: boldface and italics

<orientation>: 0 to 360 degrees (0 = default).
<orientation> does not work for font 5 (Bosch).

If individual parameters are not to be specified at least the corresponding
commas must be written in front of the last programmed parameter: e.g.
TFO(,,3).
At the end of the program the default setting TFO(0,0,0,0) automatically
becomes active again.

If you set another font than ”0” the following applies:
D The specification of line and column in CPL dialog commands defines

only the starting position for the screen output. An assignment between
line/column and the returned character no longer exists because of the
differing space requirement of a character.

D Softkey texts are not returned centered.

Dialog Programming7–10

1070 073 740-111 (02.11) GB

Notes:

Graphic Programming 8–1

1070 073 740-111 (02.11) GB

8 Graphic Programming

Graphic programming allows the representation of text and drawings on the
screen. The following functions are available for this purpose:
D Selection of color
D Selection of line type
D Selection of the graphics area
D Drawing of lines and circles
D Filling of closed contour surfaces
D Selective deletion of screen areas
D Text display in graphics grid
D Representation of bitmap files

8.1 Color selection

In CPL 2 fixed and 1 freely definable color tables are available.
Each color table contains 8 colors and each color is assigned a color code
(0 to 7; integer).
Table 3 is assigned as Table 2 as a default setting for the time being.

. The colors in Table 3 can be changed by RGB command. Here the indi-
vidual color codes can also be assigned mixed colors.

Table 1 (fix)

0
1
2
3
4
5
6
7

black
red
green
yellow
blue
purple
light blue
white

Table 2 (fix)

0
1
2
3
4
5
6
7

white
red
green
yellow
blue
purple
light blue
black

Table 3

0
1
2
3
4
5
6
7

white
red
green
yellow
blue
purple
light blue
black

color code

When the program is started the first table is always automatically activated.
The colors for screen objects are preset as follows:
Color of Lines, circles: 1

Text: 2
Text background: 0
Softkeys: 3
Softkey background: 4
Graphics background: 0

To select a color use the COL command.
With this, new screen objects to be displayed can be assigned a different
color from the active color table or a specific color table can be activated at
any time.

Graphic Programming8–2

1070 073 740-111 (02.11) GB

COL
Assigns new screen objects to be displayed a color from the active color
table or activates a specific color table.

. When a color table is activated the entire screen is erased.

COL([<graphics>],[<text>],[<textBG>],[<tab>],[<SK>],[<SKBG>])

<graphics>: Color code for lines and circles.
<text>: Color code for text.
<textBG>: Color code for text background.
<tab>: 0: Selection of color table 1.

7: Selection of color table 2.
10: Selection of color table 3.

<SK>: Color code for softkey text.
<SKBG>: Color code for softkey text background.

As color code any INTEGER expression in the value range from 0 to 7 may
be used.

If and when individual parameters are not to be specified at least the corre-
sponding commas must be written in front of the last programmed parame-
ter: e.g. COL(,,,3).

Examples:
10 COL(,,,7) Selection of color table 2. Entire screen is erased.
.
30 COL(,,,10) Selection of color table 3. Entire screen is erased.
.
50 COL(,,,,1,4) Color for softkey text: 1; color for softkey text background: 4
.
70 COL(4) Color for lines and circles: 4
.
90 COL(,6,5) Color for text: 6; color for text background: 5

RGB
Programs colors in the third color table.

. If you want to use mixed colors (mixed colors: color portions except 0
and 255) first set a color resolution of at least 65536 colors (high color;
16 bit) in the PC control panel.
You will find a table of standardized mixed colors on the PC control
panel in the directory ”c:\programme\exceed.95(nt)\user\rgb.txt”.

RGB(<color code>,<R>,<G>,)

<color code>: 0 to 7. Any INTEGER expression.
Determines which color in table 3 is changed.

<R>: 0 to 255. Any INTEGER expression. Red portion.
(0: no red portion; 255: max. red portion).

<G>: 0 to 255. Any INTEGER expression. Green portion.
(0: no green portion; 255: max. green portion).

: 0 to 255. Any INTEGER expression. Blue portion.
(0: no blue portion; 255: max. blue portion).

Examples: Set colors in color table 3 and activate color table 3.
: Assign colors to the individual color codes.
10 RGB(0,238,130,238) Color code 0: violet
11 RGB(1,255,165,0) Color code 1: orange
12 RGB(3,192,192,192) Color code 3: grey
13 RGB(4,165,42,42) Color code 4: brown
20 COL(1,2,3,10,4,5) Activate color table 3.

Graphic Programming 8–3

1070 073 740-111 (02.11) GB

8.2 Line type

GMD
The GMD function can be used to select the type of representation of lines
on the screen.

GMD(<line type>)

<line type>: 0 = unbroken line
1 = line must be erased
2 = erase line or regenerate erased line
3 = dash-dot line
4 = dash-dash line

8.3 Defining the graphics area

GWD
When the control unit is switched on the displayable graphics range is as
follows:
D horizontal: 0–632 pixels
D vertical: 0–374 pixels

Softkey range

CPL dialog

0,0

Y
max. 374

X
max. 632

632, 374

If only a portion of this graphics range is desired, you can use the GWD com-
mand to define a rectangular graphic window.

GWD(<X left>,<X right>,<Y bottom>,<Y top>)

<X left>: Left window edge. INTEGER expression, with
<X left> greater than or equal to 0;
<X left> smaller than <X right>

<X right>: Right window edge. INTEGER expression, with
<X right> greater than <X left>;
<X right> smaller than or equal to 632

<Y bottom>: Bottom window edge. INTEGER expression, with
<Y bottom> greater than or equal to 0;
<Y bottom> smaller than <Y top>

<Y top>: Top window edge. INTEGER expression, with
<Y top> greater than <Y bottom>;
<Y top> smaller than or equal to 374

Programming example: see Chap. 8.5.

Graphic Programming8–4

1070 073 740-111 (02.11) GB

MWD
If the edges of the current graphics window are to take on values of another
coordinate system for the next graphics programming, this can be achieved
using the MWD command. When doing so, make sure that the parameters
of the current graphics window have the same ratio to each other as the pa-
rameters of the MWD command. This means that the ”MWD rectangle”
must have the same side-side ratio as that of the ”GWD rectangle”. The
command format and parameterization correspond to those of the GWD
command:

MWD(<X left>,<X right>,<Y bottom>,<Y top>)

Programming example: see Chap. 8.5.

8.4 Join (line)

LIN
Draws a line between starting and end point (programming example, see
Chap. 8.5).

LIN(<X start>,<Y start>,<X end>,<Y end>)

<X start>,<Y start>: Pixel coordinates of the starting point. Any
INTEGER expressions.

<X end>,<Y end>: Pixel coordinates of the endpoint. Any
INTEGER expressions.

If a contour pass is being programmed, the definition of the starting point is
no longer required after the 2nd line. The last endpoint is regarded as the new
starting point. In this case it is possible to write as follows:

LIN(<X end>,<Y end>)

If <X end> or <Y end> remain unchanged compared to the preceding LIN
instruction, renewed specification of <X end> or <Y end> may be omitted.

If no true-to-scale graphics window has been defined using the MWD com-
mand (please see there), the coordinate values will be interpreted as pixel
values (image spots of the monitor). If REAL values are used instead of
INTEGER values, an internal conversion to integer pixel values will take
place.

Graphic Programming 8–5

1070 073 740-111 (02.11) GB

8.5 Circle

CIR
Draws full circles or arcs of circles in clockwise direction.

Full circle:
CIR(<X center>,<Y center>,<radius>)

Partial circle (arc) clockwise:
CIR(<X start>,<Y start>,<X end>,<Y end>,<X center>,<Y center>)

<X center>,<Y center>: Circle-center coordinates in the form of any
INTEGER expression.

<radius>: Radius of the full circle in the form of any
INTEGER expression.

<X start>,<Y start>: Coordinates of the starting point in the form of
any INTEGER expression.

<X end>,<Y end>: Coordinates of the end point in the form of any
INTEGER expression.

If parameter values are identical with a preceding circle programming, these
unchanging parameters may be omitted at the corresponding place of the
CIR command.
If REAL values are used instead of INTEGER values, an internal conversion
to integer pixel values will take place.

Examples: Graphic commands

1 DLF :REM Bring CPL dialog window to the foreground
2 COL(7,,,7) :REM Activate color table 2, set graphic color to ’black’

3 GWD(100,500,100,350) :REM Specify graphic area
4 MWD(0,400,–150,100) :REM Determine edges of the coordinate system

5 LIN(50,–100,100,–50) :REM Draw line from 50/–100 to 100/–50

6 REM Draw half–circle from 100/–50 to 200/–50 with center 150/–50
7 CIR(100,–50,200,–50,150,–50)

8 LIN(,0) :REM Draw line from 200/–50 to 200/0

9 REM Draw full circle with center 200/10 (R=10)
10 CIR(200,0,,,200,10)

11 LIN(300,) :REM Draw line from 200/0 to 300/0

12 REM Draw half–circle from 300/0 to 300/–100 with center 300/–50
13 GMD(3) :REM Set line type to ’dash–dot’ line
14 CIR(300,0,300,–100,300,–50)
15 GMD(0) :REM Set line type to ’unbroken’ line

16 LIN(50,–100) :REM Draw line from 300/–100 to 50/–100

20 REM Draw arrowhead
21 #XX=195 : #YY=–50 : #WI=30
22 LIN(#XX,#YY,#XX+15*COS(#WI+165),#YY+15*SIN(#WI+165))
23 LIN(#XX+15*COS(#WI+195),#YY+15*SIN(#WI+195)):LIN(#XX,#YY)

24 REM Fill the tip of the arrow with the color ’black’

25 FIL(#XX–10*COS(#WI),#YY–10*SIN(#WI),0,7,7)
26 LIN(#XX–15*COS(#WI),#YY–15*SIN(#WI),#XX–30*COS(#WI),#YY–30*SIN(#WI))

Graphic edition
of the example

Arrowhead

Graphic Programming8–6

1070 073 740-111 (02.11) GB

Lines 21 to 26 draw an arrowhead, with the global variables #XX and #YY
representing the coordinates of the tip of the arrow and #AN (#WI) the angle
of the arrowhead with reference to the X axis of the graphics coordinate sys-
tem. This also shows clearly that the use of REAL expressions is permitted,
since they are converted to INTEGER values internally.

8.6 Filling in closed contour surfaces

FIL
Fills in a closed contour.

FIL(<X value>,<Y value>,<fill pattern>,<fill color>
[,<contour color>])

<X value>,<Y value>: Coordinates of the fill-in point within the closed
contour in the form of any INTEGER expres-
sions.

<fill pattern>: INTEGER expression y 0 and x 5, currently
not used for representation. Reserved for later
implementation.

<fill color>: Color code (cf. page 8–1).
<contour color>: Color code (cf. page 8–1) of the closed con-

tour pass.
This indication is only necessary if the fill color
does not correspond to the color of the con-
tour.

8.7 Clear commands

CLG
Clears the entire image area (CLear Graphic) permissible for CPL and
moves the CPL dialog window into the background of the screen (see also
DLF instruction on p. 8–8).

CLR
Clears the graphics range (CLear Range) defined by GWD.

CLS
Clears the entire screen (CLear Screen).

Graphic Programming 8–7

1070 073 740-111 (02.11) GB

8.8 Text output in the graphics grid

GPR
If text is to be written in a form other than in the line/column grid, such as is
the case with the PRN and DSP commands, text can be addressed in graph-
ics coordinates using the GPR command.
For this purpose, the bottom left point of the letter matrix at the beginning of a
character string is defined by way of specifying the screen pixels in the X and
Y direction.
The command format is as follows:

GPR(<X pixel>,<Y pixel>[+<offset>],<text>)

<X pixel>,<Y pixel>: Coordinates of the first alphanumeric character (bot-
tom left image spot) of the character string in <Text>. The coor-
dinates must be within the defined graphics range and may be
any INTEGER expressions.

<offset>: Owing to the fact that, in contrast to the other graphics com-
mands, the use of the GPR also allows writing in the softkey
area, there is a difference of 40 pixels between the Y address-
ing of the GPR command and that of the other graphics com-
mands.
If, especially in the case of variable addressing, the Y coordi-
nate is supposed to be uniform, this difference has to be taken
into account in the form of an addition of 40 pixels.
<Y pixel> and <offset> together must not exceed the defined
graphics range.

<text>: Any STRING expression (constant or variable).

Softkey range

CPL dialog
Y

max. 414

max. 632

632, 414

X0,0

Example:

GPR(X+16,Y+40,”pixel”) : GPR(X+64,Y+40,N$)

.
1
2
3
4
5
6
7
.

NR%=49 : REM, *** ! ”1” ***
FOR W%=0 STEP 45 TO 360
 X=75+W% : Y=175+100*SIN(W%)
 N$=CHRS(NR%) : NR%=NR%+1
 LIN(X,Y+10,X,Y–10) : LIN(X–10,Y,X+10,Y)

NEXT W%

ASCII character 49

Graphic Programming8–8

1070 073 740-111 (02.11) GB

8.9 Influencing the entire CPL dialog window

CLG
Clears the entire screen range allowed for CPL, and moves the CPL dialog
window to the background of the screen.

DLF
Moves the CPL dialog window to the foreground of the screen.

8.10 Display bitmap files

BMP
Displays bitmaps (picture files of type ”*.bmp”) in the CPL dialog window.

. If the color intensity of the bitmap to be shown does not comply with
the currently set color intensity as displayed on the screen the system
automatically performs a bitmap conversion. As a result, the bitmap is
displayed after a delay.

BMP(<X value>,<Y value>,”<file>”,[<copy type>])

<X value>,<Y value>:

Coordinates in the CPL dialog window for the upper left-hand
pixel of the bitmap to be displayed.
Value range:
<X value>: 0 ... 632
<Y value>: 0 ... 374
Any INTEGER expressions are possible.
The entire graphics area incl. softkey bar can be used for dis-
playing the bitmap.

Softkey range

CPL dialog

0,0

Y
max. 374

X
max. 632

632,374

–40,0

Bitmap

X value

Y
 v

al
ue

Graphic Programming 8–9

1070 073 740-111 (02.11) GB

<file>: File name of the bitmap without file name extension (.bmp).
Max. 70 characters. Must be programmed as STRING expres-
sion.

. Used bitmap files must always be stored in the following directory:
”...\typ3pcp\bin\cplbmp”.
If the file cannot be accessed the following error message appears:
”cplbmp\<name>.bmp is not existing”.
After the error message has been acknowledged the program is con-
tinued.

<copy type>: Value range 0 to 8. Any INTEGER expression.
The parameter defines how the bitmap is copied into the CPL
dialog window. In this way the bitmap to be displayed can also
linked with the current content of the CPL dialog window.

0: Bitmap is copied over the contents of the CPL dialog win-
dow.

1: White surface with the size of the bitmap is copied over the
contents of the CPL dialog window.

2: Black surface with the size of the bitmap is copied over the
contents of the CPL dialog window.

3: Bitmap is copied into the CPL dialog window. The pixels of
the bitmap (source) and those of the CPL dialog window
(target) are linked here according to the following formula:
target = source OR target

4: Like 3, but link formula here:
target = source AND target

5: Like 3, but but link formula here:
target = source XOR target

6: Like 3, but link formula here:
target = source AND (NOT target)

7: Like 3, but link formula here:
target = (NOT source)

8: Like 3, but link formula here:
target = (NOT source) AND (NOT target)

Example:

Source Target

Result in copy type

0 1 2 3 4 5 6 7 8

Graphic Programming8–10

1070 073 740-111 (02.11) GB

Notes:

Communication 9–1

1070 073 740-111 (02.11) GB

9 Communication

MMC
Sends information from a part program to a client at program run time and
waits for a response from this client.
This is carried out with the aid of CPL variables, which can send values from
the part program as well as return values to the part program.
The part program is stopped during run time at the point where the MMC
command is received.

The following processing possibilities are possible:
D If no client has reported that it is able to process the MMC command, then

the corresponding return value (=1) is assigned and the processing of the
part program continues.

D If a suitable client for processing the data of the MMC command is avail-
able, then an assignment between the part program and the client oc-
curs. After the client has sent a reply, the corresponding return value is
set and the execution of the part program continues.

The MMC command can have a maximum of 20 CPL variables as parame-
ters. The name and the values of these variables are transmitted to the
client.

The instruction has the following structure:
MMC(<CPL var1>[,<CPL var2>....[,<CPL varN>]....])

<CPL var1> ... <CPL varN> CPL variables, N=max. 20
The client can write new values on the CPL
variables stated in the MMC command. The
CPL variables stated in the MMC command
can be used in the part program.

The MMC command supplies the following return values as a result:
0: o.k.
1: no client available
2: error in the client

Example:
10 DIM PROGNAME$ (50)
20 PROGNAME$ = ”WinProg”
30 INTPAR% = 1
40 REALPAR = 1.1
50 I% = MMC (PROGNAME$,INTPAR%,REALPAR)

60 IF I% = 0 THEN
70 IF INTPAR% = 2 THEN
80
90 ELSE
100
110 ENDIF
120 ENDIF

The CPL variables
PROGNAME$, INTPAR%
and REALPAR with
their values are made
available to the cli-
ent.

The block preparation
of the part program
is not continued in
line 60 until a cor-
responding ’finished’
message has come.

!

!

Communication9–2

1070 073 740-111 (02.11) GB

Notes:

Annex A–1

1070 073 740-111 (02.11) GB

A Annex

A.1 Abbreviations

Abbreviation Description

C Drive name, in this case drive C (hard
disk drive)

CPL Customer Programming Language

ESD Electro-Static Discharge
Abbreviation for all terms relating to elec-
tro-static discharge, e.g. ESD protection,
ESD hazards, etc.

Fx Function key with number x

GOM Group Operating Mode

HP Main Program (’Hauptprogramm’)

LSEC Lead Screw Error Compensation

MDI Mode “Manual Data Input“

MP MACODA parameter

MSD Machine-Status Display

MTB Machine-Tool Builder

NC, CNC Numeric Control

OI Operator Interface

OM Operating Mode

PE Protective Earth

PLC Programmable Logic Controller

SK Softkey

SP Sub-program

AnnexA–2

1070 073 740-111 (02.11) GB

A.2 Overview of commands

Command Syntax / Short description see
page

ABS ABS(<input value>)

Returns the absolute value of the input value, i.e. negative values become posi-
tive, positive values remain positive.

2–16

ACOS <function value>=ACOS(<input value>)

Application of arc cosine (anticosine) function to the <input value>.

2–17

AND <expression1> AND <expression2>

Binary operation of two BOOLEAN or INTEGER expressions with the AND func-
tion.

2–18

APOS APOS(<axis selection>)

Transfers the current actual axis value referred to the machine zero point.

4–17

ASC ASC(<character string>)

Outputs the ordinal number of the first character (ASCII code) in a <character
string> as an INTEGER value.

5–5

ASIN <function value>=ASIN(<input value>)

Application of arc sine (antisine) function to the <input value>.

2–17

ATAN <function value>=ATAN(<input value>)

Application of arc tangent (antitangent) function to the <input value>.

2–17

AXO AXO(<axis selection>[,<selection type>])

Transfers an active G92 shift for a coordinate.

4–9

AXP AXP(<axis number>,<positional data>)

The application of this function is carried out in an NC block. It must be in square
brackets “[]” and is programmed in lieu of the address values.

4–39

BCD <BCD value>=BCD(<binary value>)

Converts a binary format to BCD format.

2–19

BIN <binary value>=BIN(<BCD value>)

Converts a BCD format to binary format.

2–19

BMP BMP(<X value>,<Y value>,<file>,[<copy type>])

Displays bitmaps (picture files of the ”*.bmp” type) in the CPL dialog window.

8–8

CALL CALL <program number> [<transfer parameter1>,...] [DIN]

Sub-program call from a CPL program.

3–2

Annex A–3

1070 073 740-111 (02.11) GB

Command see
page

Syntax / Short description

CASE CASE <Integer expression> OF

LABEL <int. constant>[,<additional int. constant>]
[: <instruction>] <instruction>

:

LABEL ...

:

OTHERWISE <instruction>

<instruction>

:

ENDCASE

Conditional selection from several alternatives.

2–24

CHR$ CHR$(<Integer expression>)

Transmits a character whose ordinal number in the ASCII table is equal to the
value transferred via the <INTEGER expression> parameter.

5–5

CIR CIR(<X start>,<Y start>,<X end>,<Y end>,<X center>,<Y center>)

CIR(<X center>,<Y center>,<radius>)

Output of a partial or full circle.

8–5

CLG Clears the entire image area and moves the CPL dialog window into the back-
ground.

8–6,
8–8

CLOCK <function value>=CLOCK

Time counter query in milliseconds.

4–42

CLOSE CLOSE(<n>)

Closes an open file with logical number <n> after concluding read or write opera-
tions.

6–10

CLR Deletion of the graphics range defined via GWD. 8–6

CLS Deletion of the entire image range. 8–6

COF COF(<axis selection>[,<selection type>])

Supplies for the current channel (here: channel in which the program with the
COF command is running) the contour shift last programmed (G60) of a coordi-
nate.

4–26

COL COL([<graphics>],[<text>],[<textBG>],[<tab>],[<SK>],[<SKBG>]

Defines the colors for graphics, text, text background, softkey text and softkey text
background. Also switches the color table.

8–2

COS <function value> = COS(<input value>)

Application of the cosine function to the <input value>.

8–6

CPOS CPOS(<axis selection>[,<selection type>])

Transfers the last programmed absolute position of a coordinate.

4–9

CPROBE CPROBE(<axis selection>[,<selection type>])

Reads the measured value for one coordinate at a time.

4–10

CSF Deletion of the current softkey bar. 7–3

DATE <STRING variable>=DATE

DATE assigns the date in DD.MM form to the <STRING variable>.

4–42

AnnexA–4

1070 073 740-111 (02.11) GB

Command see
page

Syntax / Short description

DIM DIM <variable name>(<field size1>[,<field size2>])

Specifies the field size (dimensioning) of ARRAY variables with INTEGER
constants.

2–13,
5–1

DLF Moves the CPL dialog window to the screen foreground. 8–8

DLG Start of a dialog input range. 7–5

DPC DPC(<axis selection>[,<selection type>])

Supplies for the current channel (here: channel in which the program with the
DPC command is running) the parameters last programmed of the compensation
of workpiece position G138 of a coordinate (shift values and rotation angles).

4–27

DSP DSP(<line>,<column>,<expression1>,..,<expressionN>)

Formatted output of text on the screen, positioned by line and column number.

7–3

ENDDLG End of a dialog input range. 7–5

EOF EOF(<n>)

Checks for end of file.

6–10

ERASE ERASE(<PGM identifier>)

Erases files.

6–15

FALSE <BOOLEAN variable>=FALSE

Truth value of a BOOLEAN variable.

2–13

FIL FIL(<X value>,<Y value>,<fill pattern>,<fill color>[,
<contour color>])

Filling of closed contour surfaces.

8–6

FILEACCESS FILEACCESS(<file name>)

Returns the information whether a file exists and which access rights it has.

6–16

FILEDATE FILEDATE(<file name>[,<mode>])

Determines the date / time of a file.

6–17

FILEPOS FILEPOS(<n>[,<mode>])
<n> = logical file number.
<mode> = mode

Returns the record number of the current record and the record offset of a random
file.
Returns in case of sequential files the current byte position of the file pointer.

6–11

FILESIZE FILESIZE(<n>[,<k>])
<n> = logical file number.
<k> = mode

Transmits the size of a file, or the limit up to which a file has already been written.
The file can be a sequential or a random file.

6–14

FOR NEXT FOR <numerical variable>=<start value> [STEP <step size>]
TO <end value><routine>
NEXT [<numerical variable>]

Loop construction with automatic counter.

2–20

FXC FXC(<axis selection>[,<G address>[,<axis ZS table>[,<unit>]]])

Access to axis zero shift values.

4–19

Annex A–5

1070 073 740-111 (02.11) GB

Command see
page

Syntax / Short description

FXCR FXCR(<channel or layout>,<TabName>[,<classification>])

Sets up a new ZS table.

4–21

FXDEL FXDEL(<TabName>,<axis desig>)

Deletes a column in a ZS table.

4–21

FXINS FXINS(<TabName>,<position>,<axis name>[,<axis type>])

Sets up a new column in a ZS table.

4–22

GETERR GETERR(<channel>,[<category>],<error no.>[,<number>])

Supplies the error no., channel no. and the assigned error category for the current
errors.

4–43

GMD GMD(<line type>)

Definition of the type of representation of lines.

8–3

GOTO GOTO <jump destination>

Unconditional program jumps to line numbers, block numbers or labels.

2–22

GPR GPR(<X pixel>,<Y pixel>[+<offset>],<text>)

Text output in pixel graphics grid.

8–7

GWD GWD(<X left>,<X right>,<Y bottom>,<Y top>)

Determination of the graphics range in terms of pixels.

8–3

IC IC(<bit>[,<group>][,<index>]])

Access to the digital interface between CNC and PLC.

4–40

IF ENDIF IF <condition> THEN <routine> [ELSE <alternative routine>] ENDIF

Conditional jump to a routine or alternative routine.

2–23

INKEY <function value>=INKEY

Supplies a pressed key as a function value (at time when command is invoked).

7–5

INP INP(<variable>)

Input of a value for the specified variable.

7–7

INP# INP#(<n>,<variable>[,<variable>][,...][;])

Read-access to data from the file with the logical number <n>.

6–8

INSTR INSTR(<character string>,<STRING expression>[,<start point>])

Beginning at the <start point>, searches for a <character string> within a
<STRING expression> and outputs its start position as an INTEGER value.

5–4

INT <INTEGER number>=INT(<REAL expression>)

Converts a <REAL expression> to an <INTEGER number> by removing the deci-
mal places.

2–16

LEN LEN(<STRING expression>)

Returns the number of characters in a STRING expression. The result is an
INTEGER value.

5–4

LIN LIN(<X start>,<Y start>,<X end>,<Y end>)

Draws a line.

8–4

AnnexA–6

1070 073 740-111 (02.11) GB

Command see
page

Syntax / Short description

LJUST LJUST

Switches to left-justified data output and is effective for all file outputs up to the
end of the program run.

6–5

MCA MCA(<block>,<index>[,<channel>])

Transfers the contents of a MACODA individual parameter.

4–29

MCODS MCODS(<type>,<channel>,<version>,<buffer>,<size>,[<P1>])

Calls Motion Control Data services of the NCS by CPL. Enables data and sta-
tuses to be output from the CNC.

4–48

MCOPS MCOPS(<fct>,<channel>[[,[<P1>][,[<P2>],[<P3>]]],<P3>])

Calls Motion Control Process services of the NCS by CPL. Enables controlling of
channels in the CNC.

4–70

MID$ MID$(<STRING expression>,<start point>[,<number of
characters>])

This function takes a part from a <STRING expression> and outputs it as text.
The result can be transferred to a STRING variable or to an appropriately dimen-
sioned character field.

MID$(<character field>,<start point>[,<number of characters>])

Overwrites parts of a character field.

5–2

MMC MMC(<CPL var1>[,<CPL var2>....[,<CPL varN>]....])

Sends information on the program run time from a part program to a client and
waits for the result from this client.

9–1

MPOS MPOS(<axis selection>[,<axis type>[,<channel>]])

Transfers the currently interpolated command position referred to the machine
zero point of the machine coordinate system MCS.

4–14

MWD MWD(<X left>,<X right>,<Y bottom>,<Y top>)

Definition of a coordinate system for the current graphics window.

8–4

NCF NCF(<NC function>)

Transfers the syntax of the active NC function within the NC modal group of <NC
function>.

4–30

NJUST NJUST

Premature resetting of left-justified data output to formatted output.

6–5

NOT NOT <expression>

Negation of a BOOLEAN or bit-by-bit negation of an INTEGER expression.

2–18

NUL <variable>=NUL

Deleting a variable

2–15

OPENR OPENR(<n>,<PGM name>[,<record length>])

Opens a file for subsequent read-access.

6–3

OPENW OPENW(<n>,<PGM name>[,<length>][,<PGM remark>][,<record length>])

Opens a file for subsequent write-access.

6–3

Annex A–7

1070 073 740-111 (02.11) GB

Command see
page

Syntax / Short description

OR <expression1> OR <expression2>

Binary operation of two BOOLEAN or INTEGER expressions with the OR func-
tion.

2–18

PDIM PDIM <parameter name>(<field size>)

If a sub-program

D with a string constant as transfer parameter is to be invoked
and

D the invoking program is selected without linking

the PDIM command must be used.

3–3

PLC PLC(<type>,<DM number>,<address>,<size>)

Access to PLC data.

4–41

PPOS PPOS(<axis selection>[,<axis type>])

Requests the axis actual position in the switch point of the measuring probe.

4–15

PRN PRN(<line>,<column>”[<text>]<format>[<text>]”)

Display of the dialog text and determination of the input format.

7–7

PRN# PRN#(<n>,[<expression>][,<expression>][,<expression>][,...][;])

Write-access to a file with the logical number <n>.

6–5

PROBE PROBE(<axis selection>[,<axis type>])

Requests the axis position in the switch point of the measuring probe. The value
supplied refers to axis zero point coordinates of the machine coordinate system
MSC.

4–16

REM REM <remark text>

Program commentary

2–25

REPEAT REPEAT <routine> UNTIL <condition>

Loop construction with query of abort condition after first execution of the routine.

2–21

REWRITE REWRITE(<n>)

Overwrites an existing file.

6–7

RGB RGB(<color code>,<R>,<G>,,)

Programs colors in the third color table.

8–2

Round <INTEGER number>=ROUND(<REAL expression>)

Converts a REAL expression to an INTEGER number by rounding up or down.

2–17

SCL SCL(<selection>[,<axis selection>[,<selection type>]])

Supplies for the current channel (here: channel in which the program with the SCL
command is running) the parameters last programmed of the functions G37 and
G38 (pole coordinates, scaling factors and rotation angles).

4–28

SCS SCS(<axis index>,<ID type>,<ID no.>[,<Result var>])

Enables read-access to SERCOS drive parameters of the active parameter set.

4–30

SCSL SCSL(<axis index>,<ID type>,<ID no.>,<filename>
[,<Result var>])

Creating a file for SERCOS parameter lists.

4–31

AnnexA–8

1070 073 740-111 (02.11) GB

Command see
page

Syntax / Short description

SD SD(<group>[,<index1>[,<index2>[,<index3>]]])

Reads active system data of the NC control unit.

4–32

SDR SDR(<group>[,<index1>[,<index2>]])

Reads active system data of the NC control unit in REAL format.

4–37

SEEK SEEK(<n>,<k>[,<o>])
<n> = logical file number
<k> = record
<o> = record offset

Positions the file pointer on the <k>th record of a random file or on the <k>th byte
of a sequential file.

6–13

SFK SFK(<variable>,[<text1>],..[<text8>])

Output of a softkey bar, and assignment of the softkey being depressed to the
specified variable.

7–8

SIN <function value>=SIN(<input value>)

Application of sine function to <input value>.

2–17

SPOS SPOS(<axis selection>)

Transfers the current axis command value of a physical axis.

4–18

SQRT <function value>=SQRT(<input value>)

Application of square root function to <input value>.

2–17

STR$ STR$([<format string>,]<value>)

Converts the numerical expression <value> to a character string which can only
be assigned to a character field.
If <format string> is programmed, the string can be output formatted.
<value> can be an INTEGER or REAL expression of simple and double precision.

5–6

TAN <function value>=TAN(<input value>)

Application of tangent function to <input value>.

2–17

TC TC(<selection>[,<group>[,<table>[,<unit>]]])

Access to tool compensation data.

4–23

TDA TDA(<sector no.>,<place no.>,<field no.>[,<Tool tab no.>])

If the internal tool database is configured in the NC read- or write-access to indi-
vidual fields can be achieved by TDA.

4–25

TFO TFO(,<size>,<cut>,<orientation>)

Modifies the font in the CPL dialog.

7–9

TIME <STRING variable>=TIME

TIME assigns the time in HH.MM.SS form to the <STRING variable>.

4–42

TRIM$ TRIM$(<character string>)

TRIM$(<character string>,”L”)

TRIM$(<character string>,”R”)

When a character field range is assigned to a STRING variable or character field
this command returns a character string without preceding (³ index L) or sub-
sequent (³ index R) spaces. The TRIM$ function without index masks out both
preceding and concluding spaces.

5–8

Annex A–9

1070 073 740-111 (02.11) GB

Command see
page

Syntax / Short description

TRUE <BOOLEAN variable>=TRUE

Truth value of a BOOLEAN variable.

2–13

VAL VAL(<STRING expression>)

Returns the numerical value for a <STRING expression>.

5–7

WAIT WAIT [([<IC condition>][,[<duration>][,<Result var>]])]

Stops block processing until all blocks programmed ahead of WAIT are pro-
cessed, or until a certain state occurs at the digital interface between NC and PLC
and/or until a predefined period of time has lapsed.

4–1

WHILE WHILE <condition> DO <routine> END

Loop construction with query of abort condition before the first loop execution.

2–21

WPOS WPOS(<axis selection>[,<selection type>[,<channel>]])

Transfers the interpolated command (set) position referred to the workpiece zero
point of the current WCS.

4–11

XOR <expression1> XOR <expression2>

Binary operation of two BOOLEAN or INTEGER expressions with
EXCLUSIVE-OR function.

2–18

AnnexA–10

1070 073 740-111 (02.11) GB

A.3 Differences regarding the CPL commands: Typ3 osa <–> CC200, CC220,
CC300, CC320

This list includes the presently existing differences regarding the CPL com-
mand set of the Typ3 osa to the previous controls Typ1 osa, CC200, CC220,
CC300, CC320.

A.3.A CPL commands and SD functions which are no longer applicable in the
Typ3 osa

The following CPL commands are no longer applicable in the Typ3 osa in
comparison to the above-mentioned previous controls:

Command Remark

IC Command is not compatible, as the interface assignment
is different (see ICL700 project planning manual)
Typ3 osa interface has been divided into the following
groups:
– channel,
– axis and
– spindle

TD, TDR inapplicable, as Typ3 uses no KS tables

FIX, FIXB, FIXE Complex graphics can be quickly called up in the Typ3
osa with the CPL command ”BMP” (Bit map)

OPENR(”TTY”),
OPENW(”TTY”)

CPL access to serial standard interfaces is no longer pos-
sible

MIC In the Typ3 osa the single word access to the NC inter-
face is done with the CPL command ”PLC”

CLX The CLX command when changing the background color
is no longer programmed in the Typ3 osa, instead the
COL command is used.

TXT$ No longer applicable, as the Typ3 osa uses no CPL text
files.

Annex A–11

1070 073 740-111 (02.11) GB

The following SD functions (functions for system data) are no longer ap-
plicable in the Typ3 osa in comparison to the previous controls:

Command Remark

SD(1,–,3) Power-up condition of G functions

SD(2,2) Setting of rapid traverse potentiometer
(Typ3 osa uses no rapid traverse potentiometer)

SD(3) Number of the last programmed or active tool compensa-
tion table*

SD(3) Number of the last programmed or active zero shift table*

SD(6) Last programmed help function

SD(7) Active or programmed tool

SD(16) Dry run to block with sub-program call:
control of runs

SD(17) Dry run to block with sub-program call:
active G functions

SD(20) Next available program number*

SD(21) File status and access rights

SD(23) Panel type: passive/PC control panel color/monochrome

SD(24) Pointer to the active main and sub-program

SD(30) Prevents setting G codes back to power-up condition

SD(31) Direct processing: size, offset and level of utilization

SD(32) Program selection from the program memory and PC
control panel

SD(33) Read in files from PC control panel

SD(34) Load files into PC control panel

SD(2,5) Position of the 5th potentiometer

SD(5,5,1),SD(5,5,2) Active or programmed feed of the oscillating axis

The following SD functions (functions for system data) are no longer ap-
plicable in the Typ3 osa in comparison to the previous controls ”Typ1 osa/
CC220 Center”:

Command Remark

SD(101–104) Compensation of the workpiece position (rotating and
mirroring via SD function)

SD(105) Sub-program call with simple auxiliary functions:
number of auxiliary functions

SD(110) External tool compensations:
entering the tool number for the display

SD(111) Upper speed limit for spindles

AnnexA–12

1070 073 740-111 (02.11) GB

The following SD functions (functions for system data) are no longer ap-
plicable in the Typ3 osa in comparison to the previous controls ”Typ1 osa/
CC220 Lathe”:

Command Remark

SD(140–142) Piece counter

SD(143,144) Transmission ratio of the motorized tool

SD(145) Programmed and rated speed of the motorized tool

SD(146) Minimum permitted distance to the axis of rotation

SD(147) Maximum tool length

The following SDR functions are no longer applicable in the Typ3 osa in
comparison to the previous controls:

Command Remark

SDR(4) Active zero shift values

SDR(5) Active speeds and revolutions

SDR(12) Spindle position with M19

*) Typ3 osa uses file names instead of file numbers.

A.3.B CPL commands and SD functions which have been changed in the Typ3 osa

The following CPL commands have been changed in the Typ3 osa in com-
parison to the previous controls:

Command Remark

IC Command is not compatible, as the interface assignment
is different (see ICL700 project planning manual)
Typ3 osa interface has been divided into the following
groups:
– channel,
– axis and
– spindle

COL The meaning of parameters 3, 4 and 5 of the COL com-
mand have been changed.
The color setting ”blinking” no longer exists.

SFK The SFK command has been extended to 8 softkeys.

REM No further CPL block may follow a ”REM” remark:
10 REM, this is a comment:
DSP(z%,S%,FA$,FB$,A,B,C)

Annex A–13

1070 073 740-111 (02.11) GB

The following SD functions (functions for system data) have been
changed in the Typ3 osa in comparison to the previous controls:

Command Remark

SD(8) Typ1osa: last main program number called
Typ3osa: channel number of the invoking channel

SD(14) Typ1osa: active foreign language (file order in the
customer EPROM)

Typ3osa: Active foreign language (corresponds to the
country code F=33, GB=44, etc.)

SD(22) Typ1osa: reading access to the machine parameter for
customer software; (P4017) is no longer
applicable.

Typ3osa: Access via the CPL command ”MCA” to the
customer specific MACODA group 50
”applications”.

A.3.C Other CPL changes in the Typ3 osa

The following functions have been changed in the Typ3 osa in comparison
to the previous controls:

Command Remark

Control panel The graphic window of the Typ3 osa is larger than that of
the Typ1 osa:
Horizontally: 79 columns (text) or 633 pixels (graphics)
Vertically: 46 lines (text) or 415 pixels (graphics)
See chapter 8.8

8 softkeys (see page 7–8)

Key codes By using the CPL command ”INP” the keys can be
queried. As the control panel has been changed, so have
some keycodes been changed.
(See Annex A.6 ”Additional keycodes”

(TYP2) Those CPL dialog programs marked ”(TYP2)” are exe-
cuted as “Typ2”-compatible in Typ3 osa. Only the first 5
softkeys are used and the dialog uses only the smaller
graphic section of the previous controls.

(See chapter 7 ”Dialog programming”)

MP 4017 The machine parameter block P4017 ”Machine parame-
ters for customer software” no longer exists in the Typ3
osa.
MP 4017 has been replaced by the MACODA group 50
”applications” (5010 00001 and 5010 00002) for configur-
ing CPL programs and PLC modules.

AnnexA–14

1070 073 740-111 (02.11) GB

A.4 MACODA parameters (list of changes)

Beginning with the software version V5.1.x the MACODA parameters have
received other numbers. This list shows the change from old to new
MACODA numbers:

old MACODA no.
(up to and inclu-
ding V4.x.x)

new MACODA no.
(V5.1.x and up)

1001 0000 1
1001 0000 2
1001 0000 3
1001 0000 4
1001 0000 5
1001 0000 6
1001 0000 7
1001 0000 8
1001 0000 9
1001 0001 0
1001 0001 1
1001 0001 2
1001 0002 0
1001 0005 0
1001 0005 1
1001 0005 5
1001 0005 6
1001 0005 7
1001 0006 0
1001 0006 1
1001 0010 0
1001 0100 1
1001 0100 2
1001 0100 3

1003 0000 1
1003 0000 2
1001 0000 1
1003 0000 4
1003 0000 5
1050 0000 1
7010 0003 0
obs.
1003 0000 9
1003 0001 0
1003 0001 1
1003 0001 2
1003 0002 0
1003 0005 0
obs.
1003 0005 5
1003 0005 6
1003 0005 7
1003 0006 0
1003 0000 8
1003 0010 0
obs.
6020 0001 1
6020 0001 2

1010 0000 3
1010 0000 4
1010 0000 6
1010 0000 9

1010 0001 1
1010 0001 2
1010 0000 1
1010 0000 2

1015 0000 1
1015 0000 6
1015 0000 7

1015 0000 2
1015 0010 0
1015 0000 1

1030 0000 4
1030 0000 5
1030 0000 8
1030 0000 9
1030 0001 0
1030 0010 1
1030 0030 1
1030 0030 2
1030 0030 3
1030 0020 1
1030 0020 2

7030 0001 0
7030 0031 0
7030 0021 0
7030 0022 0
7030 0011 0
7040 0011 0
7050 00110
7050 0012 0
7050 0013 0
7020 0001 0
7010 0011 0

1040 0001 1
1040 0001 2

1050 0000 3
1050 0000 4

Annex A–15

1070 073 740-111 (02.11) GB

old MACODA no.
(up to and inclu-
ding V4.x.x)

new MACODA no.
(V5.1.x and up)

1050 0000 1
1050 0000 6
1050 0008 9
1050 0010 0
1050 0010 1
1050 0100 0
1050 0100 1

9030 0000 1
1050 0001 1
1050 0001 2
1050 0003 1
1050 0003 2
1050 0000 2
1050 0002 1

1061 0000 2
1061 0000 3
1061 0000 4
1061 0000 5

1020 0000 1
1020 0000 2
1020 0000 3
1020 0000 4

1070 0000 2
1070 0000 3
1070 0000 4
1070 0000 9
1070 0002 0
1070 0002 1
1070 0001 1
1070 0001 8
1070 0010 1
1070 0090 1

1040 0001 0[1]
1040 0001 1[1]
1040 0001 2[1]
1040 0001 5[1]
1040 0002 0[1]
1040 0002 1[1]
1040 0003 1[1]
1040 0004 1[1]
9020 0011 0
1040 0000 3

1080 0000 2
1080 0000 3
1080 0000 4
1080 0000 9
1080 0002 0
1080 0002 1
1080 0001 1
1080 0001 8

1040 0001 0[2]
1040 0001 1[2]
1040 0001 2[2]
1040 0001 5[2]
1040 0002 0[2]
1040 0002 1[2]
1040 0003 1[2]
1040 0004 1[2]

2060 0000 1
2060 0001 0

obs.
obs.

3030 0000 1
3030 0000 2

7060 0002 0
7060 0001 0

3080 0000 3
3080 0010 0
3080 0010 1
3080 0010 2

7070 0001 0
7060 0031 0
7060 0032 0
7060 0033 0

9020 0000 5
9020 0000 6

obs.
obs.

9098 0000 1
9098 0000 2
9098 0000 3
9098 0000 4
9098 0000 9
9098 0001 0
9098 0001 1
9098 0001 2
9098 0001 6
9098 0002 0
9098 0002 4
9098 0003 0
9098 0004 0

9050 0000 1
9040 0000 1
7060 0011 0
9040 0010 4
7060 0021 0
7050 0001 0
7050 0002 0
7050 0003 0
7040 0001 0
7040 0002 0
8004 0000 1
9020 0001 0
7050 0031 0

AnnexA–16

1070 073 740-111 (02.11) GB

A.5 ASCII character set

Dec. Hex ASCII

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

SP
!
"
#
$
%
&
’
(
)
*
+
,
_

.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

‘
a
b
c
d

f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z

DEL

e

Dec. Hex ASCII Dec. Hex ASCII Dec. Hex ASCII

!
"

(_)
()

@

[

]
\ I

{

}
~

: Characters that are skipped by default when reading-in data

A.6 Additional keycodes

Keycodes
Meaning

(Dec.)

134
135
136
137

CURSOR UP
CURSOR DOWN
CURSOR RIGHT
CURSOR LEFT

139

141
142
143
144

SOFTKEY 1
SOFTKEY 2
SOFTKEY 3
SOFTKEY 4

145
146

SOFTKEY 5
SOFTKEY 6

147
148

SOFTKEY 7
SOFTKEY 8

LEVEL RETURN

Annex A–17

1070 073 740-111 (02.11) GB

A.7 Index

A
ABS, 2–16
ACOS, 2–17
Active system data, 4–29
AND, 2–18
APOS, 4–17
ARRAY, 2–13
ASC, 5–5
ASIN, 2–17
ATAN, 2–17
Axes, synchronous and asynchronous, 4–5
Axis address, variable , 4–39
Axis and coordinate positions, 4–3
Axis names, physical and logical, 4–4
Axis positions, 4–3
Axis zero shift operations, 4–19
Axis ZS tables, 4–19
AXO, 4–9
AXP, 4–39

B
BCD, 2–19
BIN, 2–19
Bitmap files, Display, 8–8
BMP, 8–8
BOOLEAN, 2–9, 2–13
Brackets [..], 2–3
Branch instructions, 2–23

C
CALL, 3–2
CASE–LABEL...LABEL–OTHERWISE–ENDCASE, 2–24
CHARACTER, 2–9, 2–14
Character fields, Dimensioning, 5–1
Character string, 5–1

Length, 5–4
Modifying, 5–3
Reading, 5–2
Searching, 5–4

Character string constant, 2–7
CHR$, 5–5
CIR, 8–5
Circle, 8–5
Clear commands, 8–6
CLG, 8–6, 8–8
CLOCK, 4–42
CLOSE, 6–10
CLR, 8–6
CLS, 8–6
Code characters, 2–6
COF, 4–26
COL, 8–2
Color code, 8–1

Color selection, 8–1
Communication, 9–1
Compensation of workpiece position, 4–27
Conditional jump instructions, 2–23
Constant, Double–precision, 2–7
Constants, 2–7
Contour shift, 4–26
Contour surfaces, Filling in closed, 8–6
Conversion, Numeric systems, 2–19
Coordinate positions, 4–3
Coordinates, for active axis transformation, 4–5
COS, 2–17
CPL – Basic Elements, 2–1
CPL block, 2–4
CPL dialog

Calling via softkey, 7–1
in the editor, 7–2

CPL dialog window, Influencing, 8–8
CPOS, 4–9
CPROBE, 4–10
CSF, 7–3
Cycles, 3–1

D
Data input, 7–3
Data output, 7–3
DATE, 4–42
Dialog programming, 7–1
DIM, 5–1
DLF, 8–8
DLG, 7–5
Documentation, 1–7
DOUBLE, 2–9, 2–12
DPC, 4–27
DSP, 7–3

E
EMC Directive, 1–1
EMERGENCY–STOP devices, 1–5
ENDDLG, 7–5
EOF, 6–10
ERASE, 6–15
Error return values, 4–46
Errors and error categories, 4–43
ESD

Electrostatic discharge, 1–6
grounding, 1–6
workplace, 1–6

ESD–sensitive components, 1–6

F
Field variable, 2–13
FIL, 8–6

AnnexA–18

1070 073 740-111 (02.11) GB

File
Closing, 6–10
Determine access rights, 6–16
Determine date, 6–17
Determining size, 6–14
Erasing, 6–15
Inscribing, 6–5
Names, 6–1
Opening, 6–3
Pointer position, 6–11
Reading, 6–8
Recognition of end, 6–10
Setting pointer, 6–13

File handling, 6–1
File structure

Random, 6–2
Sequential, 6–2

FILEACCESS, 6–16
FILEDATE, 6–17
FILEPOS, 6–11
FILESIZE, 6–14
Floppy disk drive, 1–7
FOR – STEP – TO – NEXT, 2–20
Function overview, MCODS, 4–49
Functions

for axis and coordinate positions, 4–7
for coordinates or physical axes, 4–8
for NCS coupling, 4–48
for physical or logical axes, 4–13
for use with physical axes only, 4–17

FXC, 4–19
FXCR, 4–21
FXDEL, 4–21
FXINS, 4–22

G
GETERR, 4–43
Global interface, 4–40
GMD, 8–3
GOTO, 2–22
GPR, 8–7
Graphic programming, 8–1
Graphics area, Definition, 8–3
Grounding bracelet, 1–6
GWD, 8–3

H
Hard disk drive, 1–7
HighSpeed interface, 4–40

I
IC, 4–40
IF – THEN – ELSE – ENDIF, 2–23
INKEY, 7–5
INP, 7–7
INP#, 6–8
INP# , 7–2
INSTR, 5–4
Instruction words, reserved, 2–6
Instructions, 2–15
INT, 2–16

INTEGER, 2–7, 2–12
Intended use, 1–1

J
Jump instruction, Unconditional, 2–22
Jump instructions, Conditional, 2–23

K
Key terms, 2–6

L
Label, 2–22
LEN, 5–4
LIN, 8–4
Line, 8–4
Line and column grid, 7–4
Line type, 8–3
Linking, 2–5
LJUST, 6–5
Logical operations, 2–18
Low–Voltage Directive, 1–1

M
MCA, 4–29
MCODS, Motion control data services, 4–48
MCOPS, 4–70
Measuring units, supplied axis and coordinate positions,

4–7
MID$, 5–2, 5–3
MMC, 9–1
Modules sensitive to electrostatic discharge. See ESD–sen-

sitive components
Motion control data services, MCODS, 4–48
Motion control process services, 4–70
MPOS, 4–14
MWD, 8–4

N
NC block, 2–3
NCF, 4–30
NCS coupling, 4–46
NCS coupling via MCODS, 4–48
NJUST, 6–5
NOT, 2–18
NUL, 2–15
Numbers, 5–5

O
Offset, Graphics area, 8–7
OPENR, 6–3
OPENW, 6–3
Operations

Arithmetical, 2–16
Double–precision, 2–7
Logical, 2–18

OR, 2–18

P
Parameter transfer, to sub–programs, 3–3
PDIM, 3–3

Annex A–19

1070 073 740-111 (02.11) GB

Pixels
horizontal, 8–3
vertical, 8–3

PLC, 4–41
PLC interface, 4–40
PPOS, 4–15
PRN, 7–7
PRN#, 6–5, 7–2
PROBE, 4–16
Program remark, 2–25
Program structure, 2–1
Programming examples

Character string, 5–9
NCS functions, 4–76

Pseudo coordinates, 4–6

Q
Qualified personnel, 1–2

R
REAL, 2–7, 2–12
Relational operations, 2–19
Release, 1–8
REM, 2–25
REPEAT – UNTIL, 2–21
Repeat instructions, 2–20
REWRITE, 6–7
RGB, 8–2
ROUND, 2–17

S
Safety instructions, 1–4
Safety markings, 1–3
Scaling, 4–28
SCL, 4–28
Screen, Line and column grid, 7–4
SCS, 4–30
SCSL, 4–31
SD, 4–32
SDR, 4–37
SEEK , 6–13
SFK, 7–8
SIN, 2–17
Spaces, Removing, 5–8
Spare parts, 1–6
SPOS, 4–18
SQRT, 2–17
Square bracket, 2–3
Start of program, 2–4
STR$, 5–6
STRING, 2–14
STRING expressions

Assigning, 5–11
Chaining, 5–13
Comparisons, 5–12

Strings, 5–5
Strings and numbers, 5–5
Sub–program call

Modal, 3–1
via CALL function, 3–2
with G, M or P address, 3–1

Sub–programs, 3–1
Symbol names, 2–5
System data, 4–29
System functions, 4–1

T
TAN, 2–17
TC, 4–23
TDA, 4–25
Test activities, 1–5
Text output, Graphics grid, 8–7
TFO, 7–9
TIME, 4–42
Time recording, 4–42
Tool compensations, 4–23
Tool database, Access, 4–25
Trademarks, 1–8
TRIM$, 5–8
Types of variables, 2–12

V
VAL, 5–7
Variables, 2–8

CHARACTER, 2–14
Definable permanent, 2–9
Global, 2–8
Local, 2–8
Overview, 2–14
Permanent, 2–9
STRING, 2–14

W
WAIT, 4–1
WHILE – DO – END, 2–21
Working range coordinates, 4–6
WPOS, 4–11

X
XOR, 2–18

AnnexA–20

1070 073 740-111 (02.11) GB

Notes:

A–1

1070 073 740-111 (02.11) GB

1070 073 740-111 (02.11) GB · HB NC · BRC/ESM11 · Printed in Germany

Bosch Rexroth AG
Electric Drives and Controls
Postfach 11 62
64701 Erbach
Berliner Straße 25
64711 Erbach
Deutschland
Tel.: +49 (0) 60 62/78-0
Fax: +49 (0) 60 62/78-4 28
www.boschrexroth.com

Australia

Bosch Rexroth Pty. Ltd.
3 Valediction Road
Kings Park NSW 2148
Phone:+61 (0) 2 98 31 77 88
Fax: +61 (0) 2 98 31 55 53

United Kingdom

Bosch Rexroth Ltd.
Broadway Lane, South Cerney
Cirencester GL7 5UH
Phone:+44 (0) 1285-86 30 00
Fax: +44 (0) 1285-86 30 03

USA

Bosch Rexroth Corporation
5150 Prairie Stone Parkway
Hoffmann Estates, Illinois 60192
Phone:+1 (0) 847 6 45-36 00
Fax: +1 (0) 847 6 45-08 04

Canada

Bosch Rexroth Canada Corp.
490 Prince Charles Drive South
Welland, Ontario L3B 5X7
Phone:+1 (0) 905 7 35-05 10
Fax: +1 (0) 905 7 35-56 46

	1 Safety Instructions
	1.1 Intended use
	1.2 Qualified personnel
	1.3 Safety markings on products
	1.4 Safety instructions in this manual
	1.5 Safety instructions for the described product
	1.6 Documentation, software release and trademarks

	2 CPL - Basic Elements
	2.1 Program structure
	2.1.1 NC block
	2.1.2 CPL block

	2.2 Start of program
	2.3 Linking
	2.4 Symbol names
	2.4.1 Reserved instruction words
	2.4.2 Constants
	2.4.3 Variables

	2.5 Instructions
	2.5.1 Arithmetical operations
	2.5.2 Logical operations
	2.5.3 Conversion between numeric systems
	2.5.4 Relational operations
	2.5.5 Repeat instructions
	2.5.6 Unconditional jump instruction
	2.5.7 Branch instructions (conditional jump instructions)
	2.5.8 Program remark

	3 Sub-programs and Cycles
	3.1 Calling sub-programs with G, M or P address
	3.2 Handling modal sub-program calls
	3.3 Sub-program call via CALL function
	3.4 Parameter transfer to sub-programs

	4 System Functions
	4.1 Standard functions
	4.2 Axis and coordinate positions
	4.2.1 Functions for coordinates or physical axes
	4.2.2 Functions for physical or logical axes
	4.2.3 Functions for use with physical axes only

	4.3 Axis zero shift operations
	4.4 Tool compensations
	4.5 Access to the tool database
	4.6 Contour shift
	4.7 Compensation of workpiece position
	4.8 Scaling
	4.9 Active system data
	4.10 Variable axis address
	4.11 PLC interface
	4.12 Time recording
	4.13 Errors and Error Categories
	4.14 NCS coupling
	4.14.1 Possible error return values of the functions
	4.14.2 Available functions
	4.14.3 Programming examples

	5 Processing Character Strings
	5.1 Dimensioning character fields
	5.2 Reading characters from a definable point into a character string
	5.3 Modifying character strings
	5.4 Character string length
	5.5 Searching for a character string
	5.6 Strings and numbers
	5.7 Removing leading and trailing spaces
	5.8 Programming examples
	5.8.1 Assigning a STRING expression to a character field
	5.8.2 Comparisons of STRING expressions
	5.8.3 Chaining STRING expressions

	6 File Handling
	6.1 Filenames and file structures
	6.1.1 File names
	6.1.2 Sequential file structure
	6.1.3 Random file structure

	6.2 Opening a file
	6.3 Inscribing a file
	6.4 Reading a file
	6.5 End-of-file recognition
	6.6 Closing a file
	6.7 Reading file pointer position
	6.8 Setting file pointer
	6.9 Determining file size
	6.10 Erasing a file
	6.11 Determine file access rights
	6.12 Determine file date

	7 Dialog Programming
	7.1 Calling CPL dialog via softkeys
	7.2 CPL dialog in the editor
	7.3 Data input and output

	8 Graphic Programming
	8.1 Color selection
	8.2 Line type
	8.3 Defining the graphics area
	8.4 Join (line)
	8.5 Circle
	8.6 Filling in closed contour surfaces
	8.7 Clear commands
	8.8 Text output in the graphics grid
	8.9 Influencing the entire CPL dialog window
	8.10 Display bitmap files

	9 Communication
	A Annex
	A.1 Abbreviations
	A.2 Overview of commands
	A.3 Differences regarding the CPL commands: Typ3 osa <-> CC200, CC220, CC300, CC320
	A.3.A CPL commands and SD functions which are no longer applicable in the Typ3 osa
	A.3.B CPL commands and SD functions which have been changed in the Typ3 osa
	A.3.C Other CPL changes in the Typ3 osa

	A.4 MACODA parameters (list of changes)
	A.5 ASCII character set
	A.6 Additional keycodes
	A.7 Index

